BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24320445)

  • 1. Oblique reconstructions in tomosynthesis. II. Super-resolution.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111912. PubMed ID: 24320445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oblique reconstructions in tomosynthesis. I. Linear systems theory.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111911. PubMed ID: 24320444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of super-resolution in digital breast tomosynthesis.
    Acciavatti RJ; Maidment AD
    Med Phys; 2012 Dec; 39(12):7518-39. PubMed ID: 23231301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications.
    Chen Y; Lo JY; Dobbins JT
    Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional linear system analysis for breast tomosynthesis.
    Zhao B; Zhao W
    Med Phys; 2008 Dec; 35(12):5219-32. PubMed ID: 19175081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computer simulation platform for the optimization of a breast tomosynthesis system.
    Zhou J; Zhao B; Zhao W
    Med Phys; 2007 Mar; 34(3):1098-109. PubMed ID: 17441255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the acquisition geometry in digital tomosynthesis of the breast.
    Sechopoulos I; Ghetti C
    Med Phys; 2009 Apr; 36(4):1199-207. PubMed ID: 19472626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Isocentric Geometry for Next-Generation Tomosynthesis With Super-Resolution.
    Acciavatti RJ; Choi CJ; Vent TL; Barufaldi B; Cohen EA; Wileyto EP; Maidment ADA
    IEEE Trans Med Imaging; 2024 Jan; 43(1):377-391. PubMed ID: 37603482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system.
    Zhao B; Zhao W
    Med Phys; 2008 May; 35(5):1978-87. PubMed ID: 18561674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image artifacts in digital breast tomosynthesis: investigation of the effects of system geometry and reconstruction parameters using a linear system approach.
    Hu YH; Zhao B; Zhao W
    Med Phys; 2008 Dec; 35(12):5242-52. PubMed ID: 19175083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.
    Zhang Y; Chan HP; Sahiner B; Wei J; Goodsitt MM; Hadjiiski LM; Ge J; Zhou C
    Med Phys; 2006 Oct; 33(10):3781-95. PubMed ID: 17089843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry.
    Bliznakova K; Kolitsi Z; Speller RD; Horrocks JA; Tromba G; Pallikarakis N
    Med Phys; 2010 Apr; 37(4):1893-903. PubMed ID: 20443511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental validation of a three-dimensional linear system model for breast tomosynthesis.
    Zhao B; Zhou J; Hu YH; Mertelmeier T; Ludwig J; Zhao W
    Med Phys; 2009 Jan; 36(1):240-51. PubMed ID: 19235392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.
    Zhao C; Vassiljev N; Konstantinidis AC; Speller RD; Kanicki J
    Phys Med Biol; 2017 Mar; 62(5):1994-2017. PubMed ID: 28072394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The quantitative potential for breast tomosynthesis imaging.
    Shafer CM; Samei E; Lo JY
    Med Phys; 2010 Mar; 37(3):1004-16. PubMed ID: 20384236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.
    Seyyedi S; Cengiz K; Kamasak M; Yildirim I
    Comput Math Methods Med; 2013; 2013():250689. PubMed ID: 24371468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of reconstruction algorithms for C-arm mammography tomosynthesis.
    Rakowski JT; Dennis MJ
    Med Phys; 2006 Aug; 33(8):3018-32. PubMed ID: 16964880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation and evaluation of an expectation maximization reconstruction algorithm for gamma emission breast tomosynthesis.
    Gong Z; Klanian K; Patel T; Sullivan O; Williams MB
    Med Phys; 2012 Dec; 39(12):7580-92. PubMed ID: 23231306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.