BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24320445)

  • 41. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms.
    Zeng R; Badano A; Myers KJ
    Phys Med Biol; 2017 Apr; 62(7):2598-2611. PubMed ID: 28151728
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Resolution at oblique incidence angles of a flat panel imager for breast tomosynthesis.
    Mainprize JG; Bloomquist AK; Kempston MP; Yaffe MJ
    Med Phys; 2006 Sep; 33(9):3159-64. PubMed ID: 17022208
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.
    Qian X; Tucker A; Gidcumb E; Shan J; Yang G; Calderon-Colon X; Sultana S; Lu J; Zhou O; Spronk D; Sprenger F; Zhang Y; Kennedy D; Farbizio T; Jing Z
    Med Phys; 2012 Apr; 39(4):2090-9. PubMed ID: 22482630
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental phantom lesion detectability study using a digital breast tomosynthesis prototype system.
    Schulz-Wendtland R; Wenkel E; Lell M; Böhner C; Bautz WA; Mertelmeier T
    Rofo; 2006 Dec; 178(12):1219-23. PubMed ID: 17136645
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
    Kim YS; Park HS; Lee HH; Choi YW; Choi JG; Kim HH; Kim HJ
    Radiol Med; 2016 Feb; 121(2):81-92. PubMed ID: 26383027
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Parallel-scanning tomosynthesis using a slot scanning technique: fixed-focus reconstruction and the resulting image quality.
    Shibata K; Notohara D; Sakai T
    Med Phys; 2014 Nov; 41(11):111903. PubMed ID: 25370636
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of three types of reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS).
    Godfrey DJ; Ren L; Yan H; Wu Q; Yoo S; Oldham M; Yin FF
    Med Phys; 2007 Aug; 34(8):3374-84. PubMed ID: 17879800
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of time-efficient reconstruction methods in digital breast tomosynthesis.
    Svahn TM; Houssami N
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):331-6. PubMed ID: 25855075
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In-plane image quality and NPWE detectability index in digital breast tomosynthesis.
    Monnin P; Verdun FR; Bosmans H; Marshall NW
    Phys Med Biol; 2020 May; 65(9):095013. PubMed ID: 32191923
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A software-based x-ray scatter correction method for breast tomosynthesis.
    Jia Feng SS; Sechopoulos I
    Med Phys; 2011 Dec; 38(12):6643-53. PubMed ID: 22149846
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simulation of 3D objects into breast tomosynthesis images.
    Shaheen E; Zanca F; Sisini F; Zhang G; Jacobs J; Bosmans H
    Radiat Prot Dosimetry; 2010; 139(1-3):108-12. PubMed ID: 20207750
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of algorithms for out-of-plane artifacts removal in digital tomosynthesis reconstructions.
    Bliznakova K; Bliznakov Z; Buliev I
    Comput Methods Programs Biomed; 2012 Jul; 107(1):75-83. PubMed ID: 22056810
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonstationary model of oblique x-ray incidence in amorphous selenium detectors: II. Transfer functions.
    Acciavatti RJ; Maidment ADA
    Med Phys; 2019 Feb; 46(2):505-516. PubMed ID: 30488455
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of angular dose distribution on the detection of microcalcifications in digital breast tomosynthesis.
    Hu YH; Zhao W
    Med Phys; 2011 May; 38(5):2455-66. PubMed ID: 21776781
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anisotropic imaging performance in breast tomosynthesis.
    Badano A; Kyprianou IS; Jennings RJ; Sempau J
    Med Phys; 2007 Nov; 34(11):4076-91. PubMed ID: 18074617
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Towards task-based assessment of CT performance: system and object MTF across different reconstruction algorithms.
    Richard S; Husarik DB; Yadava G; Murphy SN; Samei E
    Med Phys; 2012 Jul; 39(7):4115-22. PubMed ID: 22830744
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of reconstruction algorithms for a stationary digital breast tomosynthesis system using a carbon nanotube X-ray source array.
    Hu Z; Chen Z; Zhou C; Hong X; Chen J; Zhang Q; Jiang C; Ge Y; Yang Y; Liu X; Zheng H; Li Z; Liang D
    J Xray Sci Technol; 2020; 28(6):1157-1169. PubMed ID: 32925159
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comprehensive assessment of the slice sensitivity profiles in breast tomosynthesis and breast CT.
    Nosratieh A; Yang K; Aminololama-Shakeri S; Boone JM
    Med Phys; 2012 Dec; 39(12):7254-61. PubMed ID: 23231276
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computer-aided detection of clustered microcalcifications in digital breast tomosynthesis: a 3D approach.
    Sahiner B; Chan HP; Hadjiiski LM; Helvie MA; Wei J; Zhou C; Lu Y
    Med Phys; 2012 Jan; 39(1):28-39. PubMed ID: 22225272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.