These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1047 related articles for article (PubMed ID: 24320449)
1. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography. Cai C; Rodet T; Legoupil S; Mohammad-Djafari A Med Phys; 2013 Nov; 40(11):111916. PubMed ID: 24320449 [TBL] [Abstract][Full Text] [Related]
2. Exact dual energy material decomposition from inconsistent rays (MDIR). Maass C; Meyer E; Kachelriess M Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706 [TBL] [Abstract][Full Text] [Related]
3. A neural network-based method for spectral distortion correction in photon counting x-ray CT. Touch M; Clark DP; Barber W; Badea CT Phys Med Biol; 2016 Aug; 61(16):6132-53. PubMed ID: 27469292 [TBL] [Abstract][Full Text] [Related]
4. A general framework of noise suppression in material decomposition for dual-energy CT. Petrongolo M; Dong X; Zhu L Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212 [TBL] [Abstract][Full Text] [Related]
5. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization. Dong X; Niu T; Zhu L Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388 [TBL] [Abstract][Full Text] [Related]
6. Empirical beam hardening correction (EBHC) for CT. Kyriakou Y; Meyer E; Prell D; Kachelriess M Med Phys; 2010 Oct; 37(10):5179-87. PubMed ID: 21089751 [TBL] [Abstract][Full Text] [Related]
7. Segmentation-free empirical beam hardening correction for CT. Schüller S; Sawall S; Stannigel K; Hülsbusch M; Ulrici J; Hell E; Kachelrieß M Med Phys; 2015 Feb; 42(2):794-803. PubMed ID: 25652493 [TBL] [Abstract][Full Text] [Related]
8. Iterative dual energy material decomposition from spatial mismatched raw data sets. Zhao X; Hu JJ; Zhao YS; Zhang HT; Zhang P J Xray Sci Technol; 2014; 22(6):745-62. PubMed ID: 25408391 [TBL] [Abstract][Full Text] [Related]
9. Addressing CT metal artifacts using photon-counting detectors and one-step spectral CT image reconstruction. Schmidt TG; Sammut BA; Barber RF; Pan X; Sidky EY Med Phys; 2022 May; 49(5):3021-3040. PubMed ID: 35318699 [TBL] [Abstract][Full Text] [Related]
10. A model-based iterative reconstruction algorithm DIRA using patient-specific tissue classification via DECT for improved quantitative CT in dose planning. Malusek A; Magnusson M; Sandborg M; Alm Carlsson G Med Phys; 2017 Jun; 44(6):2345-2357. PubMed ID: 28369941 [TBL] [Abstract][Full Text] [Related]
11. Model-Based Iterative Reconstruction for Dual-Energy X-Ray CT Using a Joint Quadratic Likelihood Model. Zhang R; Thibault JB; Bouman CA; Sauer KD; Hsieh J IEEE Trans Med Imaging; 2014 Jan; 33(1):117-34. PubMed ID: 24058024 [TBL] [Abstract][Full Text] [Related]
12. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector. Lee S; Choi YN; Kim HJ Phys Med Biol; 2014 Sep; 59(18):5457-82. PubMed ID: 25164993 [TBL] [Abstract][Full Text] [Related]
13. Regularization of nonlinear decomposition of spectral x-ray projection images. Ducros N; Abascal JFP; Sixou B; Rit S; Peyrin F Med Phys; 2017 Sep; 44(9):e174-e187. PubMed ID: 28901616 [TBL] [Abstract][Full Text] [Related]
14. Information-theoretic discrepancy based iterative reconstructions (IDIR) for polychromatic x-ray tomography. Jang KE; Lee J; Sung Y; Lee S Med Phys; 2013 Sep; 40(9):091908. PubMed ID: 24007159 [TBL] [Abstract][Full Text] [Related]
15. Reduction of metal artifact in single photon-counting computed tomography by spectral-driven iterative reconstruction technique. Nasirudin RA; Mei K; Penchev P; Fehringer A; Pfeiffer F; Rummeny EJ; Fiebich M; Noël PB PLoS One; 2015; 10(5):e0124831. PubMed ID: 25955019 [TBL] [Abstract][Full Text] [Related]
16. Performance of today's dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: A simulation study. Faby S; Kuchenbecker S; Sawall S; Simons D; Schlemmer HP; Lell M; Kachelrieß M Med Phys; 2015 Jul; 42(7):4349-66. PubMed ID: 26133632 [TBL] [Abstract][Full Text] [Related]
17. Denoising of polychromatic CT images based on their own noise properties. Kim JH; Chang Y; Ra JB Med Phys; 2016 May; 43(5):2251. PubMed ID: 27147337 [TBL] [Abstract][Full Text] [Related]
18. Impact of joint statistical dual-energy CT reconstruction of proton stopping power images: Comparison to image- and sinogram-domain material decomposition approaches. Zhang S; Han D; Politte DG; Williamson JF; O'Sullivan JA Med Phys; 2018 May; 45(5):2129-2142. PubMed ID: 29570809 [TBL] [Abstract][Full Text] [Related]
19. CT energy weighting in the presence of scatter and limited energy resolution. Schmidt TG Med Phys; 2010 Mar; 37(3):1056-67. PubMed ID: 20384241 [TBL] [Abstract][Full Text] [Related]
20. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks. Shi Z; Li H; Cao Q; Wang Z; Cheng M Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]