BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

555 related articles for article (PubMed ID: 24320475)

  • 1. Computer-aided detection and quantification of cavitary tuberculosis from CT scans.
    Xu Z; Bagci U; Kubler A; Luna B; Jain S; Bishai WR; Mollura DJ
    Med Phys; 2013 Nov; 40(11):113701. PubMed ID: 24320475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.
    Bagci U; Foster B; Miller-Jaster K; Luna B; Dey B; Bishai WR; Jonsson CB; Jain S; Mollura DJ
    EJNMMI Res; 2013 Jul; 3(1):55. PubMed ID: 23879987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-aided pulmonary image analysis in small animal models.
    Xu Z; Bagci U; Mansoor A; Kramer-Marek G; Luna B; Kubler A; Dey B; Foster B; Papadakis GZ; Camp JV; Jonsson CB; Bishai WR; Jain S; Udupa JK; Mollura DJ
    Med Phys; 2015 Jul; 42(7):3896-910. PubMed ID: 26133591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavity contour segmentation in chest radiographs using supervised learning and dynamic programming.
    Maduskar P; Hogeweg L; de Jong PA; Peters-Bax L; Dawson R; Ayles H; Sánchez CI; van Ginneken B
    Med Phys; 2014 Jul; 41(7):071912. PubMed ID: 24989390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.
    Xu Z; Bagci U; Foster B; Mansoor A; Udupa JK; Mollura DJ
    Med Image Anal; 2015 Aug; 24(1):1-17. PubMed ID: 26026778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.
    Meng Q; Kitasaka T; Nimura Y; Oda M; Ueno J; Mori K
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):245-261. PubMed ID: 27796791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computed Tomography-Based Biomarker for Longitudinal Assessment of Disease Burden in Pulmonary Tuberculosis.
    Gordaliza PM; Muñoz-Barrutia A; Via LE; Sharpe S; Desco M; Vaquero JJ
    Mol Imaging Biol; 2019 Feb; 21(1):19-24. PubMed ID: 29845428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated computer quantification of breast cancer in small-animal models using PET-guided MR image co-segmentation.
    Bagci U; Kramer-Marek G; Mollura DJ
    EJNMMI Res; 2013 Jul; 3(1):49. PubMed ID: 23829944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated segmentation of lungs with severe interstitial lung disease in CT.
    Wang J; Li F; Li Q
    Med Phys; 2009 Oct; 36(10):4592-9. PubMed ID: 19928090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smart spotting of pulmonary TB cavities using CT images.
    Swanly VE; Selvam L; Kumar PM; Renjith JA; Arunachalam M; Shunmuganathan KL
    Comput Math Methods Med; 2013; 2013():864854. PubMed ID: 24367393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans.
    Tschirren J; Hoffman EA; McLennan G; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1529-39. PubMed ID: 16353370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration.
    Sun K; Udupa JK; Odhner D; Tong Y; Zhao L; Torigian DA
    Med Phys; 2016 Mar; 43(3):1487-500. PubMed ID: 26936732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated cavity detection of infectious pulmonary tuberculosis in chest radiographs.
    Xu T; Cheng I; Mandal M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5178-81. PubMed ID: 22255505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic segmentation of anatomical structures from CT scans of thorax for RTP.
    Özsavaş EE; Telatar Z; Dirican B; Sağer Ö; Beyzadeoğlu M
    Comput Math Methods Med; 2014; 2014():472890. PubMed ID: 25587349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fully automatic segmentation algorithm for CT lung images based on random forest.
    Liu C; Zhao R; Pang M
    Med Phys; 2020 Feb; 47(2):518-529. PubMed ID: 31788807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimally interactive segmentation of 4D dynamic upper airway MR images via fuzzy connectedness.
    Tong Y; Udupa JK; Odhner D; Wu C; Sin S; Wagshul ME; Arens R
    Med Phys; 2016 May; 43(5):2323. PubMed ID: 27147344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Airway Segmentation Using Multi-Scale Tubular Structure Filters and Texture Analysis on 3D Chest CT Scans.
    Lee M; Lee JG; Kim N; Seo JB; Lee SM
    J Digit Imaging; 2019 Oct; 32(5):779-792. PubMed ID: 30465140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Region growing algorithm combined with morphology and skeleton analysis for segmenting airway tree in CT images.
    Duan HH; Gong J; Sun XW; Nie SD
    J Xray Sci Technol; 2020; 28(2):311-331. PubMed ID: 32039883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional lung tumor segmentation from x-ray computed tomography using sparse field active models.
    Awad J; Owrangi A; Villemaire L; O'Riordan E; Parraga G; Fenster A
    Med Phys; 2012 Feb; 39(2):851-65. PubMed ID: 22320795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic detection and quantification of tree-in-bud (TIB) opacities from CT scans.
    Bagci U; Yao J; Wu A; Caban J; Palmore TN; Suffredini AF; Aras O; Mollura DJ
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1620-32. PubMed ID: 22434795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.