BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24320707)

  • 1. Shape and size control of Cu nanoparticles by tailoring the surface morphologies of TiN-coated electrodes for biosensing applications.
    Yang CJ; Lu FH
    Langmuir; 2013 Dec; 29(51):16025-33. PubMed ID: 24320707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions.
    Soomro RA; Nafady A; Sirajuddin ; Memon N; Sherazi TH; Kalwar NH
    Talanta; 2014 Dec; 130():415-22. PubMed ID: 25159429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cu2O and Au/Cu2O particles: surface properties and applications in glucose sensing.
    Won YH; Stanciu LA
    Sensors (Basel); 2012 Sep; 12(10):13019-33. PubMed ID: 23201983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helical TiO2 Nanotube Arrays Modified by Cu-Cu2O with Ultrahigh Sensitivity for the Nonenzymatic Electro-oxidation of Glucose.
    Yang Q; Long M; Tan L; Zhang Y; Ouyang J; Liu P; Tang A
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12719-30. PubMed ID: 25970570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient size control of copper nanoparticles generated in irradiated aqueous solutions of star-shaped polyelectrolyte containers.
    Zezin AA; Feldman VI; Abramchuk SS; Danelyan GV; Dyo VV; Plamper FA; Müller AH; Pergushov DV
    Phys Chem Chem Phys; 2015 May; 17(17):11490-8. PubMed ID: 25855146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth behaviour and plasmon resonance properties of photocatalytically deposited Cu nanoparticles.
    Kazuma E; Yamaguchi T; Sakai N; Tatsuma T
    Nanoscale; 2011 Sep; 3(9):3641-5. PubMed ID: 21792447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple synthesis of novel copper metal-organic framework nanoparticles: biosensing and biological applications.
    Sheta SM; El-Sheikh SM; Abd-Elzaher MM
    Dalton Trans; 2018 Apr; 47(14):4847-4855. PubMed ID: 29541717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of folic acid sensor based on the Cu doped SnO2 nanoparticles modified glassy carbon electrode.
    Lavanya N; Radhakrishnan S; Sudhan N; Sekar C; Leonardi SG; Cannilla C; Neri G
    Nanotechnology; 2014 Jul; 25(29):295501. PubMed ID: 24981704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ synthesis of thulium(III) hexacyanoferrate(II) nanoparticles and its application for glucose detection.
    Meng Z; Zheng J; Sheng Q; Zheng X
    Anal Chim Acta; 2011 Mar; 689(1):47-51. PubMed ID: 21338755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonenzymatic glucose sensor based on CuO microfibers composed of CuO nanoparticles.
    Cao F; Gong J
    Anal Chim Acta; 2012 Apr; 723():39-44. PubMed ID: 22444571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TTE DNA-Cu NPs: enhanced fluorescence and application in a target DNA triggered dual-cycle amplification biosensor.
    Wang G; Wan J; Zhang X
    Chem Commun (Camb); 2017 May; 53(41):5629-5632. PubMed ID: 28480920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonenzymatic biosensor based on Cu(x)O nanoparticles deposited on polypyrrole nanowires for improving detection range.
    Meng F; Shi W; Sun Y; Zhu X; Wu G; Ruan C; Liu X; Ge D
    Biosens Bioelectron; 2013 Apr; 42():141-7. PubMed ID: 23202344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes.
    Ahmad R; Vaseem M; Tripathy N; Hahn YB
    Anal Chem; 2013 Nov; 85(21):10448-54. PubMed ID: 24070377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles.
    Masitas RA; Khachian IV; Bill BL; Zamborini FP
    Langmuir; 2014 Nov; 30(43):13075-84. PubMed ID: 25260111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt-copper bimetallic nanostructures prepared by glancing angle deposition for non-enzymatic voltammetric determination of glucose.
    Pak M; Moshaii A; Siampour H; Abbasian S; Nikkhah M
    Mikrochim Acta; 2020 Apr; 187(5):276. PubMed ID: 32307592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas-induced formation of Cu nanoparticle as catalyst for high-purity straight and helical carbon nanofibers.
    Jian X; Jiang M; Zhou Z; Zeng Q; Lu J; Wang D; Zhu J; Gou J; Wang Y; Hui D; Yang M
    ACS Nano; 2012 Oct; 6(10):8611-9. PubMed ID: 22963353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatically induced formation of neodymium hexacyanoferrate nanoparticles on the glucose oxidase/chitosan modified glass carbon electrode for the detection of glucose.
    Sheng Q; Luo K; Zheng J; Zhang H
    Biosens Bioelectron; 2008 Nov; 24(3):429-34. PubMed ID: 18562192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of the localized surface plasmon resonance of noble metal quasispherical nanoparticles on their crystallinity-related morphologies.
    Yang P; Portalès H; Pileni MP
    J Chem Phys; 2011 Jan; 134(2):024507. PubMed ID: 21241120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection.
    Hu L; Yuan Y; Zhang L; Zhao J; Majeed S; Xu G
    Anal Chim Acta; 2013 Jan; 762():83-6. PubMed ID: 23327949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of dopant concentration, crystal phase and particle size on microbial inactivation of Cu-doped TiO2 nanoparticles.
    Sahu M; Wu B; Zhu L; Jacobson C; Wang WN; Jones K; Goyal Y; Tang YJ; Biswas P
    Nanotechnology; 2011 Oct; 22(41):415704. PubMed ID: 21918299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.