These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24320874)

  • 21. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons.
    Correa JD; Orellana PA; Pacheco M
    Nanomaterials (Basel); 2017 Mar; 7(3):. PubMed ID: 28336904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lasing in Ni Nanodisk Arrays.
    Pourjamal S; Hakala TK; Nečada M; Freire-Fernández F; Kataja M; Rekola H; Martikainen JP; Törmä P; van Dijken S
    ACS Nano; 2019 May; 13(5):5686-5692. PubMed ID: 30973219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Tunable Terahertz Metamaterial Absorber Composed of Hourglass-Shaped Graphene Arrays.
    Qi Y; Zhang Y; Liu C; Zhang T; Zhang B; Wang L; Deng X; Wang X; Yu Y
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32192053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wide wavelength tuning of optical antennas on graphene with nanosecond response time.
    Yao Y; Kats MA; Shankar R; Song Y; Kong J; Loncar M; Capasso F
    Nano Lett; 2014 Jan; 14(1):214-9. PubMed ID: 24299012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong tunable absorption enhancement in graphene using dielectric-metal core-shell resonators.
    Wan M; Li Y; Chen J; Wu W; Chen Z; Wang Z; Wang H
    Sci Rep; 2017 Feb; 7(1):32. PubMed ID: 28196968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable light trapping and absorption enhancement with graphene ring arrays.
    Xiao S; Wang T; Liu Y; Xu C; Han X; Yan X
    Phys Chem Chem Phys; 2016 Sep; 18(38):26661-26669. PubMed ID: 27722336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental near infrared absorption enhancement of graphene layers in an optical resonant cavity.
    Nematpour A; Lisi N; Piegari A; Lancellotti L; Hu G; Grilli ML
    Nanotechnology; 2019 Nov; 30(44):445201. PubMed ID: 31341097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronically Tunable Perfect Absorption in Graphene.
    Kim S; Jang MS; Brar VW; Mauser KW; Kim L; Atwater HA
    Nano Lett; 2018 Feb; 18(2):971-979. PubMed ID: 29320203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete optical absorption in periodically patterned graphene.
    Thongrattanasiri S; Koppens FH; García de Abajo FJ
    Phys Rev Lett; 2012 Jan; 108(4):047401. PubMed ID: 22400887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mid-infrared photon sensing using InGaN/GaN nanodisks via intersubband absorption.
    Xing Z; Akter A; Kum HS; Baek Y; Ra YH; Yoo G; Lee K; Mi Z; Heo J
    Sci Rep; 2022 Mar; 12(1):4301. PubMed ID: 35277566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrical Phase Control Based on Graphene Surface Plasmon Polaritons in Mid-infrared.
    Wang Y; Liu H; Wang S; Cai M; Zhang H; Qiao Y
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32235714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly efficient narrow-band absorption of a graphene-based Fabry-Perot structure at telecommunication wavelengths.
    Zhou K; Cheng Q; Song J; Lu L; Luo Z
    Opt Lett; 2019 Jul; 44(14):3430-3433. PubMed ID: 31305540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity.
    Gao Y; Shiue RJ; Gan X; Li L; Peng C; Meric I; Wang L; Szep A; Walker D; Hone J; Englund D
    Nano Lett; 2015 Mar; 15(3):2001-5. PubMed ID: 25700231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scalable and Tunable Periodic Graphene Nanohole Arrays for Mid-Infrared Plasmonics.
    Gopalan KK; Paulillo B; Mackenzie DMA; Rodrigo D; Bareza N; Whelan PR; Shivayogimath A; Pruneri V
    Nano Lett; 2018 Sep; 18(9):5913-5918. PubMed ID: 30114919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Tunable Dual-Band and Polarization-Insensitive Coherent Perfect Absorber Based on Double-Layers Graphene Hybrid Waveguide.
    Luo X; Cheng ZQ; Zhai X; Liu ZM; Li SQ; Liu JP; Wang LL; Lin Q; Zhou YH
    Nanoscale Res Lett; 2019 Nov; 14(1):337. PubMed ID: 31686268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure.
    Zhang L; Tang L; Wei W; Cheng X; Wang W; Zhang H
    Opt Express; 2016 Sep; 24(18):20002-9. PubMed ID: 27607608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping.
    Choi D; Kuru C; Choi C; Noh K; Hwang S; Choi W; Jin S
    Small; 2015 Jul; 11(26):3143-52. PubMed ID: 25828562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Broadband optical modulators based on graphene supercapacitors.
    Polat EO; Kocabas C
    Nano Lett; 2013; 13(12):5851-7. PubMed ID: 24215484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A quantum mechanical study of optical excitations in nanodisk plasmonic oligomers.
    Mokkath JH
    Phys Chem Chem Phys; 2019 Dec; 21(48):26540-26548. PubMed ID: 31778133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces.
    Sherrott MC; Hon PWC; Fountaine KT; Garcia JC; Ponti SM; Brar VW; Sweatlock LA; Atwater HA
    Nano Lett; 2017 May; 17(5):3027-3034. PubMed ID: 28445068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.