BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 24320881)

  • 1. Feasibility of poly (ϵ-caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation.
    Zhang X; Zhang C; Zhang W; Meng S; Liu D; Wang P; Guo J; Li J; Guan Y; Yang D
    Drug Dev Ind Pharm; 2015 Feb; 41(2):342-52. PubMed ID: 24320881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo study of thymosin alpha1 biodegradable in situ forming poly(lactide-co-glycolide) implants.
    Liu Q; Zhang H; Zhou G; Xie S; Zou H; Yu Y; Li G; Sun D; Zhang G; Lu Y; Zhong Y
    Int J Pharm; 2010 Sep; 397(1-2):122-9. PubMed ID: 20650309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel injectable in situ forming poly-DL-lactide and DL-lactide/glycolide implant containing lipospheres for controlled drug delivery.
    Yehia SA; Elshafeey AH; Elsayed I
    J Liposome Res; 2012 Jun; 22(2):128-38. PubMed ID: 22091557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maxillary and mandibular osteosyntheses with PLGA and P(L/DL)LA implants: a 5-year inpatient biocompatibility and degradation experience.
    Landes CA; Ballon A; Roth C
    Plast Reconstr Surg; 2006 Jun; 117(7):2347-60. PubMed ID: 16772941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable polydioxanone and poly(l/d)lactide implants: an experimental study on peri-implant tissue response.
    Kontio R; Ruuttila P; Lindroos L; Suuronen R; Salo A; Lindqvist C; Virtanen I; Konttinen YT
    Int J Oral Maxillofac Surg; 2005 Oct; 34(7):766-76. PubMed ID: 15979853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility of different poly(lactide-coglycolide) polymers implanted into the subconjunctival space in rats.
    Rönkkö S; Kaarniranta K; Kalesnykas G; Uusitalo H
    Ophthalmic Res; 2011; 46(2):55-65. PubMed ID: 21228610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of spermatogenesis by testosterone undecanoate-loaded injectable in situ-forming implants in adult male rats.
    Zhang XW; Zhang C; Zhang W; Yang D; Meng S; Wang P; Guo J; Liu DH
    Asian J Androl; 2016; 18(5):791-7. PubMed ID: 26459781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physico-chemical characterization.
    Camargo JA; Sapin A; Nouvel C; Daloz D; Leonard M; Bonneaux F; Six JL; Maincent P
    Drug Dev Ind Pharm; 2013 Jan; 39(1):146-55. PubMed ID: 22397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro degradation and biocompatibility of poly(DL-lactide-epsilon-caprolactone) nerve guides.
    Meek MF; Jansen K; Steendam R; van Oeveren W; van Wachem PB; van Luyn MJ
    J Biomed Mater Res A; 2004 Jan; 68(1):43-51. PubMed ID: 14661248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior.
    Gong C; Shi S; Wu L; Gou M; Yin Q; Guo Q; Dong P; Zhang F; Luo F; Zhao X; Wei Y; Qian Z
    Acta Biomater; 2009 Nov; 5(9):3358-70. PubMed ID: 19470411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term evaluation of degradation and foreign-body reaction of subcutaneously implanted poly(DL-lactide-epsilon-caprolactone).
    den Dunnen WF; Robinson PH; van Wessel R; Pennings AJ; van Leeuwen MB; Schakenraad JM
    J Biomed Mater Res; 1997 Sep; 36(3):337-46. PubMed ID: 9260105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term evaluation of porous poly(epsilon-caprolactone-co-L-lactide) as a bone-filling material.
    Holmbom J; Södergård A; Ekholm E; Märtson M; Kuusilehto A; Saukko P; Penttinen R
    J Biomed Mater Res A; 2005 Nov; 75(2):308-15. PubMed ID: 16059893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles.
    Kranz H; Bodmeier R
    Eur J Pharm Sci; 2008 Jul; 34(2-3):164-72. PubMed ID: 18501569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue response to partially in vitro predegraded poly-L-lactide implants.
    De Jong WH; Eelco Bergsma J; Robinson JE; Bos RR
    Biomaterials; 2005 May; 26(14):1781-91. PubMed ID: 15576152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histological changes over time around the site of sustained release naltrexone-poly(DL-lactide) implants in humans.
    Hulse GK; Stalenberg V; McCallum D; Smit W; O'neil G; Morris N; Tait RJ
    J Control Release; 2005 Nov; 108(1):43-55. PubMed ID: 16154223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo biocompatibility, sustained-release and stability of triptorelin formulations based on a liquid, degradable polymer.
    Asmus LR; Tille JC; Kaufmann B; Melander L; Weiss T; Vessman K; Koechling W; Schwach G; Gurny R; Möller M
    J Control Release; 2013 Feb; 165(3):199-206. PubMed ID: 23220105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro release of insulin and biocompatibility of in situ forming gel systems.
    Kang F; Singh J
    Int J Pharm; 2005 Nov; 304(1-2):83-90. PubMed ID: 16181752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyapatite/biodegradable poly(L-lactide-co-ε-caprolactone) composite microparticles as injectable scaffolds by a Pickering emulsion route.
    Liu X; Okada M; Maeda H; Fujii S; Furuzono T
    Acta Biomater; 2011 Feb; 7(2):821-8. PubMed ID: 20807593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of macroporous biodegradable poly(L-lactide-co-epsilon-caprolactone) foams and characterization by mercury intrusion porosimetry, image analysis, and impedance spectroscopy.
    Maquet V; Blacher S; Pirard R; Pirard JP; Vyakarnam MN; Jérôme R
    J Biomed Mater Res A; 2003 Aug; 66(2):199-213. PubMed ID: 12888989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of poly-L-lactide. Part 1: in vitro and in vivo physiological temperature degradation.
    Weir NA; Buchanan FJ; Orr JF; Dickson GR
    Proc Inst Mech Eng H; 2004; 218(5):307-19. PubMed ID: 15532996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.