These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24320951)

  • 1. A Bayesian extension of the hypergeometric test for functional enrichment analysis.
    Cao J; Zhang S
    Biometrics; 2014 Mar; 70(1):84-94. PubMed ID: 24320951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GO-Bayes: Gene Ontology-based overrepresentation analysis using a Bayesian approach.
    Zhang S; Cao J; Kong YM; Scheuermann RH
    Bioinformatics; 2010 Apr; 26(7):905-11. PubMed ID: 20176581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GOMA: functional enrichment analysis tool based on GO modules.
    Huang Q; Wu LY; Wang Y; Zhang XS
    Chin J Cancer; 2013 Apr; 32(4):195-204. PubMed ID: 23237213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Neural/Immune Gene Ontology: clipping the Gene Ontology for neurological and immunological systems.
    Geifman N; Monsonego A; Rubin E
    BMC Bioinformatics; 2010 Sep; 11():458. PubMed ID: 20831831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical Bayes estimation of posterior probabilities of enrichment: a comparative study of five estimators of the local false discovery rate.
    Yang Z; Li Z; Bickel DR
    BMC Bioinformatics; 2013 Mar; 14():87. PubMed ID: 23497228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomarker identification and cancer classification based on microarray data using Laplace naive Bayes model with mean shrinkage.
    Wu MY; Dai DQ; Shi Y; Yan H; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1649-62. PubMed ID: 22868679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the concordance of Gene Ontology terms reveals the intra- and inter-platform reproducibility of enrichment analysis.
    Zhang L; Zhang J; Yang G; Wu D; Jiang L; Wen Z; Li M
    BMC Bioinformatics; 2013 Apr; 14():143. PubMed ID: 23627640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional enrichment analysis based on long noncoding RNA associations.
    Hung KS; Hsiao CC; Pai TW; Hu CH; Tzou WS; Wang WD; Chen YR
    BMC Syst Biol; 2018 Apr; 12(Suppl 4):45. PubMed ID: 29745842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments.
    Zhao H; Chan KL; Cheng LM; Yan H
    BMC Bioinformatics; 2008; 9 Suppl 1(Suppl 1):S9. PubMed ID: 18315862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VAMPIRE microarray suite: a web-based platform for the interpretation of gene expression data.
    Hsiao A; Ideker T; Olefsky JM; Subramaniam S
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W627-32. PubMed ID: 15980550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NetGen: a novel network-based probabilistic generative model for gene set functional enrichment analysis.
    Sun D; Liu Y; Zhang XS; Wu LY
    BMC Syst Biol; 2017 Sep; 11(Suppl 4):75. PubMed ID: 28950861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prior robust empirical Bayes inference for large-scale data by conditioning on rank with application to microarray data.
    Liao JG; McMurry T; Berg A
    Biostatistics; 2014 Jan; 15(1):60-73. PubMed ID: 23934072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical approach for selection of biologically informative genes.
    Das S; Rai A; Mishra DC; Rai SN
    Gene; 2018 May; 655():71-83. PubMed ID: 29458166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing gene annotation enrichment tools for functional modeling of agricultural microarray data.
    van den Berg BH; Thanthiriwatte C; Manda P; Bridges SM
    BMC Bioinformatics; 2009 Oct; 10 Suppl 11(Suppl 11):S9. PubMed ID: 19811693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of gene set enrichment methods.
    Abatangelo L; Maglietta R; Distaso A; D'Addabbo A; Creanza TM; Mukherjee S; Ancona N
    BMC Bioinformatics; 2009 Sep; 10():275. PubMed ID: 19725948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying differentially expressed genes in meta-analysis via Bayesian model-based clustering.
    Jung YY; Oh MS; Shin DW; Kang SH; Oh HS
    Biom J; 2006 Jun; 48(3):435-50. PubMed ID: 16845907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian assignment of gene ontology terms to gene expression experiments.
    Sykacek P
    Bioinformatics; 2012 Sep; 28(18):i603-i610. PubMed ID: 22962488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NEAT: an efficient network enrichment analysis test.
    Signorelli M; Vinciotti V; Wit EC
    BMC Bioinformatics; 2016 Sep; 17(1):352. PubMed ID: 27597310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data.
    Ma S; Jiang T; Jiang R
    Bioinformatics; 2015 Feb; 31(4):563-71. PubMed ID: 25322838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-empirical Bayes inference and model diagnosis of microarray data.
    Mollah MM; Mollah MN; Kishino H
    BMC Bioinformatics; 2012 Jun; 13():135. PubMed ID: 22713095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.