BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24321044)

  • 1. Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons.
    Waran V; Narayanan V; Karuppiah R; Owen SL; Aziz T
    J Neurosurg; 2014 Feb; 120(2):489-92. PubMed ID: 24321044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects.
    Weinstock P; Rehder R; Prabhu SP; Forbes PW; Roussin CJ; Cohen AR
    J Neurosurg Pediatr; 2017 Jul; 20(1):1-9. PubMed ID: 28438070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using 3D Printing to Create Personalized Brain Models for Neurosurgical Training and Preoperative Planning.
    Ploch CC; Mansi CSSA; Jayamohan J; Kuhl E
    World Neurosurg; 2016 Jun; 90():668-674. PubMed ID: 26924117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional intracranial middle cerebral artery aneurysm models for aneurysm surgery and training.
    Wang L; Ye X; Hao Q; Ma L; Chen X; Wang H; Zhao Y
    J Clin Neurosci; 2018 Apr; 50():77-82. PubMed ID: 29439905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The utilisation of 3D printing in paediatric neurosurgery.
    Karuppiah R; Munusamy T; Bahuri NFA; Waran V
    Childs Nerv Syst; 2021 May; 37(5):1479-1484. PubMed ID: 33735402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical application of patient-specific 3D printing brain tumor model production system for neurosurgery.
    Dho YS; Lee D; Ha T; Ji SY; Kim KM; Kang H; Kim MS; Kim JW; Cho WS; Kim YH; Kim YG; Park SJ; Park CK
    Sci Rep; 2021 Mar; 11(1):7005. PubMed ID: 33772092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Printed Skull Base Simulation for Transnasal Endoscopic Surgical Training.
    Zheng JP; Li CZ; Chen GQ; Song GD; Zhang YZ
    World Neurosurg; 2018 Mar; 111():e773-e782. PubMed ID: 29309974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing for preoperative planning and surgical training: a review.
    Ganguli A; Pagan-Diaz GJ; Grant L; Cvetkovic C; Bramlet M; Vozenilek J; Kesavadas T; Bashir R
    Biomed Microdevices; 2018 Aug; 20(3):65. PubMed ID: 30078059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and initial evaluation of a novel simulation model for comprehensive brain tumor surgery training.
    Grosch AS; Schröder T; Schröder T; Onken J; Picht T
    Acta Neurochir (Wien); 2020 Aug; 162(8):1957-1965. PubMed ID: 32385637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of 3-Dimensional Printing on Cranial Neurosurgery Simulation Training.
    Vakharia VN; Vakharia NN; Hill CS
    World Neurosurg; 2016 Apr; 88():188-198. PubMed ID: 26724615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training microneurosurgery - four years experiences with an in vivo model.
    Regelsberger J; Heese O; Horn P; Kirsch M; Eicker S; Sabel M; Westphal M
    Cent Eur Neurosurg; 2011 Nov; 72(4):192-5. PubMed ID: 20635313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Three-Dimensional Printed Craniocerebral Models for Simulated Neurosurgery.
    Lan Q; Chen A; Zhang T; Li G; Zhu Q; Fan X; Ma C; Xu T
    World Neurosurg; 2016 Jul; 91():434-42. PubMed ID: 27132180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neurosurgical phantom-based training system with ultrasound simulation.
    Müns A; Mühl C; Haase R; Möckel H; Chalopin C; Meixensberger J; Lindner D
    Acta Neurochir (Wien); 2014 Jun; 156(6):1237-43. PubMed ID: 24150189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training in Brain Retraction Using a Self-Made Three-Dimensional Model.
    Mashiko T; Konno T; Kaneko N; Watanabe E
    World Neurosurg; 2015 Aug; 84(2):585-90. PubMed ID: 25862113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printing of patient-specific anatomy: A tool to improve patient consent and enhance imaging interpretation by trainees.
    Liew Y; Beveridge E; Demetriades AK; Hughes MA
    Br J Neurosurg; 2015; 29(5):712-4. PubMed ID: 25822093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Craniosynostosis Puzzle: New Simulation Model for Neurosurgical Training.
    Coelho G; Rabelo NN; Adani LB; Cecilio-Fernandes D; Souza Carvalho FR; Pinto FG; Zanon N; Teixeira MJ; Figueiredo EG
    World Neurosurg; 2020 Jun; 138():e299-e304. PubMed ID: 32109642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of Clinician-Facilitated Three-Dimensional Printing of Synthetic Cranioplasty Flaps.
    Panesar SS; Belo JTA; D'Souza RN
    World Neurosurg; 2018 May; 113():e628-e637. PubMed ID: 29486312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positioning accuracy of neurosurgeons.
    Sandoval R; MacLachlan RA; Oh MY; Riviere CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():206-9. PubMed ID: 18001925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Customised 3D Printing: An Innovative Training Tool for the Next Generation of Orbital Surgeons.
    Scawn RL; Foster A; Lee BW; Kikkawa DO; Korn BS
    Orbit; 2015; 34(4):216-9. PubMed ID: 26121063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. With the advent of domestic 3-dimensional (3D) printers and their associated reduced cost, is it now time for every medical school to have their own 3D printer?
    Balestrini C; Campo-Celaya T
    Med Teach; 2016; 38(3):312-3. PubMed ID: 26383082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.