These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 24321131)
1. The development of a dynamic, six-axis spine simulator. Holsgrove TP; Gheduzzi S; Gill HS; Miles AW Spine J; 2014 Jul; 14(7):1308-17. PubMed ID: 24321131 [TBL] [Abstract][Full Text] [Related]
2. The dynamic, six-axis stiffness matrix testing of porcine spinal specimens. Holsgrove TP; Gill HS; Miles AW; Gheduzzi S Spine J; 2015 Jan; 15(1):176-84. PubMed ID: 25224452 [TBL] [Abstract][Full Text] [Related]
3. Dynamic, six-axis stiffness matrix characteristics of the intact intervertebral disc and a disc replacement. Holsgrove TP; Gill HS; Miles AW; Gheduzzi S Proc Inst Mech Eng H; 2015 Nov; 229(11):769-77. PubMed ID: 26503838 [TBL] [Abstract][Full Text] [Related]
4. The application of physiological loading using a dynamic, multi-axis spine simulator. Holsgrove TP; Miles AW; Gheduzzi S Med Eng Phys; 2017 Mar; 41():74-80. PubMed ID: 28043781 [TBL] [Abstract][Full Text] [Related]
5. The equivalence of multi-axis spine systems: Recommended stiffness limits using a standardized testing protocol. Holsgrove TP; Amin DB; Pascual SR; Ding B; Welch WC; Gheduzzi S; Miles AW; Winkelstein BA; Costi JJ J Biomech; 2018 Mar; 70():59-66. PubMed ID: 28951045 [TBL] [Abstract][Full Text] [Related]
6. Measurement and analysis of the in vivo posteroanterior impulse response of the human thoracolumbar spine: a feasibility study. Nathan M; Keller TS J Manipulative Physiol Ther; 1994 Sep; 17(7):431-41. PubMed ID: 7989876 [TBL] [Abstract][Full Text] [Related]
7. Motion segment stiffness measured without physiological levels of axial compressive preload underestimates the in vivo values in all six degrees of freedom. Gardner-Morse MG; Stokes IA; Churchill D; Badger G Stud Health Technol Inform; 2002; 91():167-72. PubMed ID: 15457717 [TBL] [Abstract][Full Text] [Related]
8. A database of lumbar spinal mechanical behavior for validation of spinal analytical models. Stokes IAF; Gardner-Morse M J Biomech; 2016 Mar; 49(5):780-785. PubMed ID: 26900035 [TBL] [Abstract][Full Text] [Related]
9. Design and validation of a novel Cartesian biomechanical testing system with coordinated 6DOF real-time load control: application to the lumbar spine (L1-S, L4-L5). Kelly BP; Bennett CR J Biomech; 2013 Jul; 46(11):1948-54. PubMed ID: 23764173 [TBL] [Abstract][Full Text] [Related]
10. Axial rotation mechanics in a cadaveric lumbar spine model: a biomechanical analysis. Doulgeris JJ; Gonzalez-Blohm SA; Aghayev K; Shea TM; Lee WE; Hess DP; Vrionis FD Spine J; 2014 Jul; 14(7):1272-9. PubMed ID: 24295796 [TBL] [Abstract][Full Text] [Related]
11. A new dynamic six degrees of freedom disc-loading simulator allows to provoke disc damage and herniation. Wilke HJ; Kienle A; Maile S; Rasche V; Berger-Roscher N Eur Spine J; 2016 May; 25(5):1363-1372. PubMed ID: 26838335 [TBL] [Abstract][Full Text] [Related]
12. Sagittal rotational stiffness and damping increase in a porcine lumbar spine with increased or prolonged loading. Zondervan RL; Popovich JM; Radcliffe CJ; Pathak PK; Reeves NP J Biomech; 2016 Feb; 49(4):624-7. PubMed ID: 26892899 [TBL] [Abstract][Full Text] [Related]
13. Muscular contributions to dynamic dorsoventral lumbar spine stiffness. Keller TS; Colloca CJ; Harrison DE; Moore RJ; Gunzburg R Eur Spine J; 2007 Feb; 16(2):245-54. PubMed ID: 16649029 [TBL] [Abstract][Full Text] [Related]
14. Restoring lumbar spine stiffness using an interspinous implant in an ovine model of instability. Szpalski M; Gunzburg R; Colloca CJ; Kosmopoulos V; Hegazy MA; Freeman BJC; Fabeck L Clin Biomech (Bristol); 2016 Mar; 33():85-91. PubMed ID: 26963708 [TBL] [Abstract][Full Text] [Related]
15. Impact of spinal rod stiffness on porcine lumbar biomechanics: Finite element model validation and parametric study. Brummund M; Brailovski V; Petit Y; Facchinello Y; Mac-Thiong JM Proc Inst Mech Eng H; 2017 Dec; 231(12):1071-1080. PubMed ID: 28927347 [TBL] [Abstract][Full Text] [Related]
16. Physiological axial compressive preloads increase motion segment stiffness, linearity and hysteresis in all six degrees of freedom for small displacements about the neutral posture. Gardner-Morse MG; Stokes IA J Orthop Res; 2003 May; 21(3):547-52. PubMed ID: 12706030 [TBL] [Abstract][Full Text] [Related]
17. Characterization and prediction of rate-dependent flexibility in lumbar spine biomechanics at room and body temperature. Stolworthy DK; Zirbel SA; Howell LL; Samuels M; Bowden AE Spine J; 2014 May; 14(5):789-98. PubMed ID: 24290312 [TBL] [Abstract][Full Text] [Related]
18. A dynamic method for in vitro multisegment spine testing. Ilharreborde B; Zhao K; Boumediene E; Gay R; Berglund L; An KN Orthop Traumatol Surg Res; 2010 Jun; 96(4):456-61. PubMed ID: 20452304 [TBL] [Abstract][Full Text] [Related]
19. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load. Zirbel SA; Stolworthy DK; Howell LL; Bowden AE Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531 [TBL] [Abstract][Full Text] [Related]
20. Influence of different frequencies of axial cyclic loading on time-domain vibration response of the lumbar spine: A finite element study. Fan W; Guo LX Comput Biol Med; 2017 Jul; 86():75-81. PubMed ID: 28511121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]