These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 24321316)
1. Role of Rac GTPase activating proteins in regulation of NADPH oxidase in human neutrophils. Lőrincz ÁM; Szarvas G; Smith SM; Ligeti E Free Radic Biol Med; 2014 Mar; 68():65-71. PubMed ID: 24321316 [TBL] [Abstract][Full Text] [Related]
2. Role of the small GTPase Rac in p22phox-dependent NADPH oxidases. Miyano K; Sumimoto H Biochimie; 2007 Sep; 89(9):1133-44. PubMed ID: 17583407 [TBL] [Abstract][Full Text] [Related]
3. Arachidonic acid induces direct interaction of the p67(phox)-Rac complex with the phagocyte oxidase Nox2, leading to superoxide production. Matono R; Miyano K; Kiyohara T; Sumimoto H J Biol Chem; 2014 Sep; 289(36):24874-84. PubMed ID: 25056956 [TBL] [Abstract][Full Text] [Related]
4. Study on the superoxide-producing enzyme of eosinophils and neutrophils--comparison of the NADPH oxidase components. Someya A; Nishijima K; Nunoi H; Irie S; Nagaoka I Arch Biochem Biophys; 1997 Sep; 345(2):207-13. PubMed ID: 9308891 [TBL] [Abstract][Full Text] [Related]
5. Participation of Rac GTPase activating proteins in the deactivation of the phagocytic NADPH oxidase. Moskwa P; Dagher MC; Paclet MH; Morel F; Ligeti E Biochemistry; 2002 Aug; 41(34):10710-6. PubMed ID: 12186557 [TBL] [Abstract][Full Text] [Related]
6. Taurine chloramine inhibits PMA-stimulated superoxide production in human neutrophils perhaps by inhibiting phosphorylation and translocation of p47(phox). Choi HS; Cha YN; Kim C Int Immunopharmacol; 2006 Sep; 6(9):1431-40. PubMed ID: 16846837 [TBL] [Abstract][Full Text] [Related]
8. Phagocyte NADPH oxidase p67-phox possesses a novel carboxylterminal binding site for the GTPases Rac2 and Cdc42. Faris SL; Rinckel LA; Huang J; Hong YR; Kleinberg ME Biochem Biophys Res Commun; 1998 Jun; 247(2):271-6. PubMed ID: 9642115 [TBL] [Abstract][Full Text] [Related]
9. Relationship between p38 mitogen-activated protein kinase and small GTPase Rac for the activation of NADPH oxidase in bovine neutrophils. Yamamori T; Inanami O; Sumimoto H; Akasaki T; Nagahata H; Kuwabara M Biochem Biophys Res Commun; 2002 May; 293(5):1571-8. PubMed ID: 12054696 [TBL] [Abstract][Full Text] [Related]
10. A region N-terminal to the tandem SH3 domain of p47phox plays a crucial role in the activation of the phagocyte NADPH oxidase. Taura M; Miyano K; Minakami R; Kamakura S; Takeya R; Sumimoto H Biochem J; 2009 Apr; 419(2):329-38. PubMed ID: 19090790 [TBL] [Abstract][Full Text] [Related]
11. Remarkable stabilization of neutrophil NADPH oxidase using RacQ61L and a p67phox-p47phox fusion protein. Miyano K; Fukuda H; Ebisu K; Tamura M Biochemistry; 2003 Jan; 42(1):184-90. PubMed ID: 12515553 [TBL] [Abstract][Full Text] [Related]
12. Activation of the O2(-)-generating NADPH oxidase in a semi-recombinant cell-free system. Assessment of the function of Rac in the activation process. Fuchs A; Dagher MC; Jouan A; Vignais PV Eur J Biochem; 1994 Dec; 226(2):587-95. PubMed ID: 8001573 [TBL] [Abstract][Full Text] [Related]
13. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase: outsourcing a key task. Pick E Small GTPases; 2014; 5():e27952. PubMed ID: 24598074 [TBL] [Abstract][Full Text] [Related]
14. Effect of five triterpenoid compounds isolated from root bark of Aralia elata on stimulus-induced superoxide generation, tyrosyl or serine/threonine phosphorylation and translocation of p47(phox), p67(phox), and rac to cell membrane in human neutrophils. Yagi-Chaves SN; Liu G; Yamashita K; Manabe M; Song SJ; Kodama H Arch Biochem Biophys; 2006 Feb; 446(1):84-90. PubMed ID: 16405902 [TBL] [Abstract][Full Text] [Related]
15. Noxa1 as a moderate activator of Nox2-based NADPH oxidase. Kawano M; Miyamoto K; Kaito Y; Sumimoto H; Tamura M Arch Biochem Biophys; 2012 Mar; 519(1):1-7. PubMed ID: 22244833 [TBL] [Abstract][Full Text] [Related]
16. The insert region of the Rac GTPases is dispensable for activation of superoxide-producing NADPH oxidases. Miyano K; Koga H; Minakami R; Sumimoto H Biochem J; 2009 Aug; 422(2):373-82. PubMed ID: 19534724 [TBL] [Abstract][Full Text] [Related]
17. GTPases and reactive oxygen species: switches for killing and signaling. Werner E J Cell Sci; 2004 Jan; 117(Pt 2):143-53. PubMed ID: 14676270 [TBL] [Abstract][Full Text] [Related]
18. Assessment of the role for Rho family GTPases in NADPH oxidase activation. Miyano K; Sumimoto H Methods Mol Biol; 2012; 827():195-212. PubMed ID: 22144277 [TBL] [Abstract][Full Text] [Related]
19. A fusion protein between rac and p67phox (1-210) reconstitutes NADPH oxidase with higher activity and stability than the individual components. Miyano K; Ogasawara S; Han CH; Fukuda H; Tamura M Biochemistry; 2001 Nov; 40(46):14089-97. PubMed ID: 11705402 [TBL] [Abstract][Full Text] [Related]
20. The Rac effector p67phox regulates phagocyte NADPH oxidase by stimulating Vav1 guanine nucleotide exchange activity. Ming W; Li S; Billadeau DD; Quilliam LA; Dinauer MC Mol Cell Biol; 2007 Jan; 27(1):312-23. PubMed ID: 17060455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]