These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24321410)

  • 1. The role of motion platform on postural instability and head vibration exposure at driving simulators.
    Aykent B; Merienne F; Paillot D; Kemeny A
    Hum Mov Sci; 2014 Feb; 33():354-68. PubMed ID: 24321410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Head stabilization shows visual and inertial dependence during passive stimulation: implications for virtual rehabilitation.
    Wright WG; Agah MR; Darvish K; Keshner EA
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):191-7. PubMed ID: 23314779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Human tolerance to rotation at different levels of increased gravitation].
    Genin AM; Kotovskaia AR; Galle RR; Gavrilova LN; Sarkisov IIu
    Kosm Biol Aviakosm Med; 1982; 16(1):70-4. PubMed ID: 6977679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of visual field stabilization on the behavior of automobile drivers: visuo-vestibular model trials].
    Krausen C; Hamann KF
    HNO; 1987 Jul; 35(7):270-3. PubMed ID: 3497908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Case Study on Vestibular Sensations in Driving Simulators.
    Riera JV; Casas S; Alonso F; Fernández M
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-motion perception and vestibulo-ocular reflex during whole body yaw rotation in standing subjects: the role of head position and neck proprioception.
    Panichi R; Botti FM; Ferraresi A; Faralli M; Kyriakareli A; Schieppati M; Pettorossi VE
    Hum Mov Sci; 2011 Apr; 30(2):314-32. PubMed ID: 21277644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unusual vestibular and visual input in human dynamic balance as a motion sickness susceptibility test.
    Séverac Cauquil A; Dupui P; Costes Salon MC; Bessou P; Güell A
    Aviat Space Environ Med; 1997 Jul; 68(7):588-95. PubMed ID: 9215463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postural stability when walking: effect of the frequency and magnitude of lateral oscillatory motion.
    Sari HM; Griffin MJ
    Appl Ergon; 2014 Mar; 45(2):293-9. PubMed ID: 23684118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the contribution of active somatosensory stimulation to self-acceleration perception in dynamic driving simulators.
    Bruschetta M; de Winkel KN; Mion E; Pretto P; Beghi A; Bülthoff HH
    PLoS One; 2021; 16(11):e0259015. PubMed ID: 34793458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the head-neck complex in response to trunk horizontal vibration.
    Fard MA; Ishihara T; Inooka H
    Biol Cybern; 2004 Jun; 90(6):418-26. PubMed ID: 15316787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mood and simulator sickness after truck simulator exposure.
    Biernacki MP; Dziuda L
    Int J Occup Med Environ Health; 2014 Apr; 27(2):278-92. PubMed ID: 24692072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing spatially static and dynamic vibrotactile take-over requests in the driver seat.
    Petermeijer SM; Cieler S; de Winter JCF
    Accid Anal Prev; 2017 Feb; 99(Pt A):218-227. PubMed ID: 27978486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Destabilization of human balance control by static and dynamic head tilts.
    Paloski WH; Wood SJ; Feiveson AH; Black FO; Hwang EY; Reschke MF
    Gait Posture; 2006 Apr; 23(3):315-23. PubMed ID: 15961313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visuovestibular perception of self-motion modeled as a dynamic optimization process.
    Reymond G; Droulez J; Kemeny A
    Biol Cybern; 2002 Oct; 87(4):301-14. PubMed ID: 12386745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of lateral acceleration in curve driving: driver model and experiments on a real vehicle and a driving simulator.
    Reymond G; Kemeny A; Droulez J; Berthoz A
    Hum Factors; 2001; 43(3):483-95. PubMed ID: 11866202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postural time-to-contact as a precursor of visually induced motion sickness.
    Li R; Walter H; Curry C; Rath R; Peterson N; Stoffregen TA
    Exp Brain Res; 2018 Jun; 236(6):1631-1641. PubMed ID: 29589080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moving base driving simulators' potential for carsickness research.
    Kuiper OX; Bos JE; Diels C; Cammaerts K
    Appl Ergon; 2019 Nov; 81():102889. PubMed ID: 31422261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in postural sway frequency and complexity in altered sensory environments following whole body vibrations.
    Dickin DC; McClain MA; Hubble RP; Doan JB; Sessford D
    Hum Mov Sci; 2012 Oct; 31(5):1238-46. PubMed ID: 22516837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of simulated fog and motion on simulator sickness in a driving simulator and the duration of after-effects.
    Dziuda L; Biernacki MP; Baran PM; Truszczyński OE
    Appl Ergon; 2014 May; 45(3):406-12. PubMed ID: 23726466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Over-stimulation of the vestibular system and body balance.
    Charles C; Cian C; Nougier V; Bigard XA; Job A; Raphel C
    J Vestib Res; 2002-2003; 12(2-3):135-43. PubMed ID: 12867671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.