These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 24321959)

  • 1. Light trapping and near-unity solar absorption in a three-dimensional photonic-crystal.
    Kuang P; Deinega A; Hsieh ML; John S; Lin SY
    Opt Lett; 2013 Oct; 38(20):4200-3. PubMed ID: 24321959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture.
    Kuang P; Eyderman S; Hsieh ML; Post A; John S; Lin SY
    ACS Nano; 2016 Jun; 10(6):6116-24. PubMed ID: 27258082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental demonstration of broadband solar absorption beyond the lambertian limit in certain thin silicon photonic crystals.
    Hsieh ML; Kaiser A; Bhattacharya S; John S; Lin SY
    Sci Rep; 2020 Jul; 10(1):11857. PubMed ID: 32678229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectively infinite optical path-length created using a simple cubic photonic crystal for extreme light trapping.
    Frey BJ; Kuang P; Hsieh ML; Jiang JH; John S; Lin SY
    Sci Rep; 2017 Jun; 7(1):4171. PubMed ID: 28646167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures.
    Biswas R; Timmons E
    Opt Express; 2013 Sep; 21 Suppl 5():A841-6. PubMed ID: 24104579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.
    Le KQ; John S
    Opt Express; 2014 Jan; 22 Suppl 1():A1-12. PubMed ID: 24921986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved efficiency of ultra-thin µc-Si solar cells with photonic-crystal structures.
    Ishizaki K; De Zoysa M; Tanaka Y; Umeda T; Kawamoto Y; Noda S
    Opt Express; 2015 Sep; 23(19):A1040-50. PubMed ID: 26406734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.
    Tanaka Y; Kawamoto Y; Fujita M; Noda S
    Opt Express; 2013 Aug; 21(17):20111-8. PubMed ID: 24105557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.
    Bozzola A; Liscidini M; Andreani LC
    Opt Express; 2012 Mar; 20 Suppl 2():A224-44. PubMed ID: 22418672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light trapping in ultrathin silicon photonic crystal superlattices with randomly-textured dielectric incouplers.
    Callahan DM; Horowitz KA; Atwater HA
    Opt Express; 2013 Dec; 21(25):30315-26. PubMed ID: 24514610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells.
    Mallick SB; Agrawal M; Peumans P
    Opt Express; 2010 Mar; 18(6):5691-706. PubMed ID: 20389585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-field observation of beam steering in a photonic crystal superprism.
    Dellinger J; Bernier D; Cluzel B; Le Roux X; Lupu A; de Fornel F; Cassan E
    Opt Lett; 2011 Apr; 36(7):1074-6. PubMed ID: 21478987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light trapping limits in plasmonic solar cells: an analytical investigation.
    Sheng X; Hu J; Michel J; Kimerling LC
    Opt Express; 2012 Jul; 20 Suppl 4():A496-501. PubMed ID: 22828618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light trapping in thin-film solar cells with randomly rough and hybrid textures.
    Kowalczewski P; Liscidini M; Andreani LC
    Opt Express; 2013 Sep; 21 Suppl 5():A808-20. PubMed ID: 24104576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-crystalline silicon solar cell architecture with absorption at the classical 4n(2) limit.
    Biswas R; Xu C
    Opt Express; 2011 Jul; 19 Suppl 4():A664-72. PubMed ID: 21747533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perfect light trapping in nanoscale thickness semiconductor films with a resonant back reflector and spectrum-splitting structures.
    Liu JT; Deng XH; Yang W; Li J
    Phys Chem Chem Phys; 2015 Feb; 17(5):3303-8. PubMed ID: 25523334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental demonstration of light bending at optical frequencies using a non-homogenizable graded photonic crystal.
    Do KV; Le Roux X; Marris-Morini D; Vivien L; Cassan E
    Opt Express; 2012 Feb; 20(4):4776-83. PubMed ID: 22418234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband, polarization-insensitive and wide-angle absorption enhancement of a-Si:H/μc-Si:H tandem solar cells by nanopatterning a-Si:H layer.
    Li X; Zhang C; Yang Z; Shang A
    Opt Express; 2013 Jul; 21 Suppl 4():A677-86. PubMed ID: 24104494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering inverse woodpile and woodpile photonic crystal solar cells for light trapping.
    Wang B; Chen KP; Leu PW
    Nanotechnology; 2016 Jun; 27(22):225404. PubMed ID: 27109121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.