These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 24321999)

  • 1. Bacterial nucleoid structure probed by active drag and resistive pulse sensing.
    Thacker VV; Bromek K; Meijer B; Kotar J; Sclavi B; Lagomarsino MC; Keyser UF; Cicuta P
    Integr Biol (Camb); 2014 Feb; 6(2):184-91. PubMed ID: 24321999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective.
    Luijsterburg MS; Noom MC; Wuite GJ; Dame RT
    J Struct Biol; 2006 Nov; 156(2):262-72. PubMed ID: 16879983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing bacterial nucleoid structure with optical tweezers.
    Dorman CJ
    Bioessays; 2007 Mar; 29(3):212-6. PubMed ID: 17295218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding can account for RNase-sensitive constraint of bacterial nucleoid structure.
    Foley PL; Wilson DB; Shuler ML
    Biochem Biophys Res Commun; 2010 Apr; 395(1):42-7. PubMed ID: 20346349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H-NS controls metabolism and stress tolerance in Escherichia coli O157:H7 that influence mouse passage.
    Erol I; Jeong KC; Baumler DJ; Vykhodets B; Choi SH; Kaspar CW
    BMC Microbiol; 2006 Aug; 6():72. PubMed ID: 16911800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of compact spermidine nucleoids from Escherichia coli under crowded conditions: implications for in vivo nucleoid structure.
    Murphy LD; Zimmerman SB
    J Struct Biol; 1997 Aug; 119(3):336-46. PubMed ID: 9245771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial nucleoid dynamics: oxidative stress response in Staphylococcus aureus.
    Morikawa K; Ohniwa RL; Kim J; Maruyama A; Ohta T; Takeyasu K
    Genes Cells; 2006 Apr; 11(4):409-23. PubMed ID: 16611244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical Properties of Escherichia coli Cytoplasm in Stationary Phase by Superresolution Fluorescence Microscopy.
    Zhu Y; Mustafi M; Weisshaar JC
    mBio; 2020 Jun; 11(3):. PubMed ID: 32546611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative transitions of isolated Escherichia coli nucleoids: implications for the nucleoid as a cellular phase.
    Zimmerman SB
    J Struct Biol; 2006 Feb; 153(2):160-75. PubMed ID: 16384714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Underlying regularity in the shapes of nucleoids of Escherichia coli: implications for nucleoid organization and partition.
    Zimmerman SB
    J Struct Biol; 2003 May; 142(2):256-65. PubMed ID: 12713953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H-NS: a universal regulator for a dynamic genome.
    Dorman CJ
    Nat Rev Microbiol; 2004 May; 2(5):391-400. PubMed ID: 15100692
    [No Abstract]   [Full Text] [Related]  

  • 12. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin.
    Dame RT
    Mol Microbiol; 2005 May; 56(4):858-70. PubMed ID: 15853876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome architecture studied by nanoscale imaging: analyses among bacterial phyla and their implication to eukaryotic genome folding.
    Takeyasu K; Kim J; Ohniwa RL; Kobori T; Inose Y; Morikawa K; Ohta T; Ishihama A; Yoshimura SH
    Cytogenet Genome Res; 2004; 107(1-2):38-48. PubMed ID: 15305055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the compaction of isolated nucleoids from Escherichia coli.
    Zimmerman SB
    J Struct Biol; 2004 Aug; 147(2):146-58. PubMed ID: 15193643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ analysis of the higher-order genome structure in a single Escherichia coli cell.
    Shindo E; Kubo K; Ohniwa RL; Takeyasu K; Yoshikawa K
    J Biotechnol; 2008 Jan; 133(2):172-6. PubMed ID: 17889955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Escherichia coli SOS gene sbmC is regulated by H-NS and RpoS during the SOS induction and stationary growth phase.
    Oh TJ; Jung IL; Kim IG
    Biochem Biophys Res Commun; 2001 Nov; 288(4):1052-8. PubMed ID: 11689018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple restraints to the unfolding of spermidine nucleoids from Escherichia coli.
    Murphy LD; Zimmerman SB
    J Struct Biol; 2000 Oct; 132(1):46-62. PubMed ID: 11121306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleoid remodeling by an altered HU protein: reorganization of the transcription program.
    Kar S; Edgar R; Adhya S
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16397-402. PubMed ID: 16258062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat damage and repair in the Escherichia coli nucleoid: kinetics based on sedimentation analysis.
    Pellón JR
    Rev Esp Fisiol; 1983 Sep; 39(3):321-5. PubMed ID: 6361932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome.
    Hashimoto M; Ichimura T; Mizoguchi H; Tanaka K; Fujimitsu K; Keyamura K; Ote T; Yamakawa T; Yamazaki Y; Mori H; Katayama T; Kato J
    Mol Microbiol; 2005 Jan; 55(1):137-49. PubMed ID: 15612923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.