These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24322126)

  • 1. Preparing arbitrary pure states of spatial qudits with a single phase-only spatial light modulator.
    Solís-Prosser MA; Arias A; Varga JJ; Rebón L; Ledesma S; Iemmi C; Neves L
    Opt Lett; 2013 Nov; 38(22):4762-5. PubMed ID: 24322126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of two pairs of qudits using four photons and a single degree of freedom.
    De Assis PL; Carvalho MA; Berruezo LP; Ferraz J; Pádua S
    Opt Express; 2016 Dec; 24(26):30149-30163. PubMed ID: 28059292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-channel vector spatial light modulator for generation of arbitrary complex vector beams.
    Guo CS; Rong ZY; Wang SZ
    Opt Lett; 2014 Jan; 39(2):386-9. PubMed ID: 24562153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental simulation of decoherence in photonics qudits.
    Marques B; Matoso AA; Pimenta WM; Gutiérrez-Esparza AJ; Santos MF; Pádua S
    Sci Rep; 2015 Nov; 5():16049. PubMed ID: 26527330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields.
    Shibukawa A; Okamoto A; Takabayashi M; Tomita A
    Opt Express; 2014 Feb; 22(4):3968-82. PubMed ID: 24663718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of entangled states of qudits using twin photons.
    Neves L; Lima G; Aguirre Gómez JG; Monken CH; Saavedra C; Pádua S
    Phys Rev Lett; 2005 Mar; 94(10):100501. PubMed ID: 15783465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits.
    O'Sullivan-Hale MN; Khan IA; Boyd RW; Howell JC
    Phys Rev Lett; 2005 Jun; 94(22):220501. PubMed ID: 16090374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General algorithm to optimize the diffraction efficiency of a phase-type spatial light modulator.
    Cibula MA; McIntyre DH
    Opt Lett; 2013 Aug; 38(15):2767-9. PubMed ID: 23903136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete polarization control of light from a liquid crystal spatial light modulator.
    Moreno I; Davis JA; Hernandez TM; Cottrell DM; Sand D
    Opt Express; 2012 Jan; 20(1):364-76. PubMed ID: 22274360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating spatial qudit states with programmable optical devices.
    Lima G; Vargas A; Neves L; Guzmán R; Saavedra C
    Opt Express; 2009 Jun; 17(13):10688-96. PubMed ID: 19550465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-mode squeezing in arbitrary spatial modes.
    Semmler M; Berg-Johansen S; Chille V; Gabriel C; Banzer P; Aiello A; Marquardt C; Leuchs G
    Opt Express; 2016 Apr; 24(7):7633-42. PubMed ID: 27137050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum key distribution with higher-order alphabets using spatially encoded qudits.
    Walborn SP; Lemelle DS; Almeida MP; Ribeiro PH
    Phys Rev Lett; 2006 Mar; 96(9):090501. PubMed ID: 16606248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emulation of a quantum spin with a superconducting phase qudit.
    Neeley M; Ansmann M; Bialczak RC; Hofheinz M; Lucero E; O'Connell AD; Sank D; Wang H; Wenner J; Cleland AN; Geller MR; Martinis JM
    Science; 2009 Aug; 325(5941):722-5. PubMed ID: 19661423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transferring arbitrary d-dimensional quantum states of a superconducting transmon qudit in circuit QED.
    Liu T; Su QP; Yang JH; Zhang Y; Xiong SJ; Liu JM; Yang CP
    Sci Rep; 2017 Aug; 7(1):7039. PubMed ID: 28765631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression.
    Liang J; Wu SY; Fatemi FK; Becker MF
    Appl Opt; 2012 Jun; 51(16):3294-304. PubMed ID: 22695563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental optimal cloning of four-dimensional quantum states of photons.
    Nagali E; Giovannini D; Marrucci L; Slussarenko S; Santamato E; Sciarrino F
    Phys Rev Lett; 2010 Aug; 105(7):073602. PubMed ID: 20868043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing d-dimensional quantum channels by means of quantum process tomography.
    Varga JJM; Rebón L; Pears Stefano Q; Iemmi C
    Opt Lett; 2018 Sep; 43(18):4398-4401. PubMed ID: 30211874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental generation of Mathieu-Gauss beams with a phase-only spatial light modulator.
    Hernández-Hernández RJ; Terborg RA; Ricardez-Vargas I; Volke-Sepúlveda K
    Appl Opt; 2010 Dec; 49(36):6903-9. PubMed ID: 21173824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Holographic generation of complex fields with spatial light modulators: application to quantum key distribution.
    Gruneisen MT; Miller WA; Dymale RC; Sweiti AM
    Appl Opt; 2008 Feb; 47(4):A32-42. PubMed ID: 18239697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization, design, and optimization of a two-pass twisted nematic liquid crystal spatial light modulator system for arbitrary complex modulation.
    Macfaden AJ; Wilkinson TD
    J Opt Soc Am A Opt Image Sci Vis; 2017 Feb; 34(2):161-170. PubMed ID: 28157842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.