These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24322298)

  • 1. A critical switch in the enzymatic properties of the Cid1 protein deciphered from its product-bound crystal structure.
    Munoz-Tello P; Gabus C; Thore S
    Nucleic Acids Res; 2014 Mar; 42(5):3372-80. PubMed ID: 24322298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional implications from the Cid1 poly(U) polymerase crystal structure.
    Munoz-Tello P; Gabus C; Thore S
    Structure; 2012 Jun; 20(6):977-86. PubMed ID: 22608966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity.
    Lunde BM; Magler I; Meinhart A
    Nucleic Acids Res; 2012 Oct; 40(19):9815-24. PubMed ID: 22885303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural plasticity of Cid1 provides a basis for its distributive RNA terminal uridylyl transferase activity.
    Yates LA; Durrant BP; Fleurdépine S; Harlos K; Norbury CJ; Gilbert RJ
    Nucleic Acids Res; 2015 Mar; 43(5):2968-79. PubMed ID: 25712096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the activity of a cytoplasmic RNA terminal uridylyl transferase.
    Yates LA; Fleurdépine S; Rissland OS; De Colibus L; Harlos K; Norbury CJ; Gilbert RJC
    Nat Struct Mol Biol; 2012 Aug; 19(8):782-787. PubMed ID: 22751018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of modified nucleotide polymers by the poly(U) polymerase Cid1: application to direct RNA sequencing on nanopores.
    Vo JM; Mulroney L; Quick-Cleveland J; Jain M; Akeson M; Ares M
    RNA; 2021 Dec; 27(12):1497-1511. PubMed ID: 34446532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved crystallization and diffraction of caffeine-induced death suppressor protein 1 (Cid1).
    Yates LA; Durrant BP; Barber M; Harlos K; Fleurdépine S; Norbury CJ; Gilbert RJ
    Acta Crystallogr F Struct Biol Commun; 2015 Mar; 71(Pt 3):346-53. PubMed ID: 25760713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Cid1 poly(U) polymerase.
    Rissland OS; Norbury CJ
    Biochim Biophys Acta; 2008 Apr; 1779(4):286-94. PubMed ID: 18371314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient RNA polyuridylation by noncanonical poly(A) polymerases.
    Rissland OS; Mikulasova A; Norbury CJ
    Mol Cell Biol; 2007 May; 27(10):3612-24. PubMed ID: 17353264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA surveillance by uridylation-dependent RNA decay in Schizosaccharomyces pombe.
    Chung CZ; Jaramillo JE; Ellis MJ; Bour DYN; Seidl LE; Jo DHS; Turk MA; Mann MR; Bi Y; Haniford DB; Duennwald ML; Heinemann IU
    Nucleic Acids Res; 2019 Apr; 47(6):3045-3057. PubMed ID: 30715470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cid1, a fission yeast protein required for S-M checkpoint control when DNA polymerase delta or epsilon is inactivated.
    Wang SW; Toda T; MacCallum R; Harris AL; Norbury C
    Mol Cell Biol; 2000 May; 20(9):3234-44. PubMed ID: 10757807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A family of poly(U) polymerases.
    Kwak JE; Wickens M
    RNA; 2007 Jun; 13(6):860-7. PubMed ID: 17449726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and structural bioinformatics studies of fungal CutA nucleotidyltransferases explain their unusual specificity toward CTP and increased tendency for cytidine incorporation at the 3'-terminal positions of synthesized tails.
    Kobyłecki K; Kuchta K; Dziembowski A; Ginalski K; Tomecki R
    RNA; 2017 Dec; 23(12):1902-1926. PubMed ID: 28947555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoplasmic poly(A) polymerases mediate cellular responses to S phase arrest.
    Read RL; Martinho RG; Wang SW; Carr AM; Norbury CJ
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12079-84. PubMed ID: 12218190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for acceptor RNA substrate selectivity of the 3' terminal uridylyl transferase Tailor.
    Kroupova A; Ivascu A; Reimão-Pinto MM; Ameres SL; Jinek M
    Nucleic Acids Res; 2019 Jan; 47(2):1030-1042. PubMed ID: 30462292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new way to initiate mRNA degradation.
    Marzluff W
    Nat Struct Mol Biol; 2009 Jun; 16(6):613-4. PubMed ID: 19491938
    [No Abstract]   [Full Text] [Related]  

  • 17. 3' Uridylation and the regulation of RNA function in the cytoplasm.
    Norbury CJ
    Biochem Soc Trans; 2010 Aug; 38(4):1150-3. PubMed ID: 20659020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimal requirements for reverse polymerization and tRNA repair by tRNA
    Desai R; Kim K; Büchsenschütz HC; Chen AW; Bi Y; Mann MR; Turk MA; Chung CZ; Heinemann IU
    RNA Biol; 2018; 15(4-5):614-622. PubMed ID: 28901837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 1.4-A crystal structure of the S. pombe Pop2p deadenylase subunit unveils the configuration of an active enzyme.
    Jonstrup AT; Andersen KR; Van LB; Brodersen DE
    Nucleic Acids Res; 2007; 35(9):3153-64. PubMed ID: 17452359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into the specific recognition of DSR by the YTH domain containing protein Mmi1.
    Wu B; Xu J; Su S; Liu H; Gan J; Ma J
    Biochem Biophys Res Commun; 2017 Sep; 491(2):310-316. PubMed ID: 28735863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.