These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The intracellular pH of frog skeletal muscle: its regulation in hypertonic solutions. Abercrombie RF; Roos A J Physiol; 1983 Dec; 345():189-204. PubMed ID: 6420547 [TBL] [Abstract][Full Text] [Related]
5. Intracellular free Mg2+ concentration in skeletal muscle fibres of frog and crayfish. Günzel D; Galler S Pflugers Arch; 1991 Jan; 417(5):446-53. PubMed ID: 2011468 [TBL] [Abstract][Full Text] [Related]
6. Ionic conductances in frog short skeletal muscle fibres with slow delayed rectifier currents. Lynch C J Physiol; 1985 Nov; 368():359-78. PubMed ID: 2416916 [TBL] [Abstract][Full Text] [Related]
7. Free magnesium in sheep, ferret and frog striated muscle at rest measured with ion-selective micro-electrodes. Hess P; Metzger P; Weingart R J Physiol; 1982 Dec; 333():173-88. PubMed ID: 6820662 [TBL] [Abstract][Full Text] [Related]
8. Intracellular free magnesium and its regulation, studied in isolated ferret ventricular muscle with ion-selective microelectrodes. Buri A; McGuigan JA Exp Physiol; 1990 Nov; 75(6):751-61. PubMed ID: 2271154 [TBL] [Abstract][Full Text] [Related]
9. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle. Bolton TB; Vaughan-Jones RD J Physiol; 1977 Sep; 270(3):801-33. PubMed ID: 20501 [TBL] [Abstract][Full Text] [Related]
10. The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog. Lüttgau HC; Spiecker W J Physiol; 1979 Nov; 296():411-29. PubMed ID: 316821 [TBL] [Abstract][Full Text] [Related]
11. Estimation of intracellular free magnesium using ion-selective microelectrodes: evidence for an Na/Mg exchange mechanism in skeletal muscle. Blatter LA Magnes Trace Elem; 1991-1992; 10(2-4):67-79. PubMed ID: 1844563 [TBL] [Abstract][Full Text] [Related]
13. Effects of external calcium reduction on the kinetics of potassium contractures in frog twitch muscle fibres. Cota G; Stefani E J Physiol; 1981 Aug; 317():303-16. PubMed ID: 6975818 [TBL] [Abstract][Full Text] [Related]
14. Potassium, sodium, water, and Donnan potential changes in the myofibrils of intact muscle fibres after exposure to ouabain and K-free Ringer. Fong CN; Hinke JA Can J Physiol Pharmacol; 1988 Aug; 66(8):1057-65. PubMed ID: 3263178 [TBL] [Abstract][Full Text] [Related]
15. Slow calcium and potassium currents across frog muscle membrane: measurements with a vaseline-gap technique. Almers W; Palade PT J Physiol; 1981 Mar; 312():159-76. PubMed ID: 6267261 [TBL] [Abstract][Full Text] [Related]
16. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. Lewis CA J Physiol; 1979 Jan; 286():417-45. PubMed ID: 312319 [TBL] [Abstract][Full Text] [Related]
18. The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle fibres. Dulhunty AF J Physiol; 1978 Mar; 276():67-82. PubMed ID: 650497 [TBL] [Abstract][Full Text] [Related]
19. The effect of leakage on micro-electrode measurements of intracellular sodium activity in crab muscle fibres. Taylor PS; Thomas RC J Physiol; 1984 Jul; 352():539-50. PubMed ID: 6747900 [TBL] [Abstract][Full Text] [Related]