These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 24322590)
1. Constitutive modeling of pia-arachnoid complex. Jin X; Mao H; Yang KH; King AI Ann Biomed Eng; 2014 Apr; 42(4):812-21. PubMed ID: 24322590 [TBL] [Abstract][Full Text] [Related]
2. Mechanical properties of bovine pia-arachnoid complex in shear. Jin X; Yang KH; King AI J Biomech; 2011 Feb; 44(3):467-74. PubMed ID: 21087768 [TBL] [Abstract][Full Text] [Related]
3. Ex-vivo quantification of ovine pia arachnoid complex biomechanical properties under uniaxial tension. Conley Natividad G; Theodossiou SK; Schiele NR; Murdoch GK; Tsamis A; Tanner B; Potirniche G; Mortazavi M; Vorp DA; Martin BA Fluids Barriers CNS; 2020 Nov; 17(1):68. PubMed ID: 33183314 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical response of the bovine pia-arachnoid complex to tensile loading at varying strain-rates. Jin X; Lee JB; Leung LY; Zhang L; Yang KH; King AI Stapp Car Crash J; 2006 Nov; 50():637-49. PubMed ID: 17311181 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical response of the bovine pia-arachnoid complex to normal traction loading at varying strain rates. Jin X; Ma C; Zhang L; Yang KH; King AI; Dong G; Zhang J Stapp Car Crash J; 2007 Oct; 51():115-26. PubMed ID: 18278593 [TBL] [Abstract][Full Text] [Related]
6. Micromechanical heterogeneity of the rat pia-arachnoid complex. Fabris G; M Suar Z; Kurt M Acta Biomater; 2019 Dec; 100():29-37. PubMed ID: 31585202 [TBL] [Abstract][Full Text] [Related]
7. Experimental Bi-axial tensile tests of spinal meningeal tissues and constitutive models comparison. Evin M; Sudres P; Weber P; Godio-Raboutet Y; Arnoux PJ; Wagnac E; Petit Y; Tillier Y Acta Biomater; 2022 Mar; 140():446-456. PubMed ID: 34838701 [TBL] [Abstract][Full Text] [Related]
8. Viscoelasticity of spinal cord and meningeal tissues. Ramo NL; Troyer KL; Puttlitz CM Acta Biomater; 2018 Jul; 75():253-262. PubMed ID: 29852238 [TBL] [Abstract][Full Text] [Related]
9. Investigation of wave propagation through head layers with focus on understanding blast wave transmission. Sutar S; Ganpule S Biomech Model Mechanobiol; 2020 Jun; 19(3):875-892. PubMed ID: 31745681 [TBL] [Abstract][Full Text] [Related]
10. Hyper-viscoelastic mechanical behavior of cranial pia mater in tension. Li Y; Zhang W; Lu YC; Wu CW Clin Biomech (Bristol); 2020 Dec; 80():105108. PubMed ID: 32736277 [TBL] [Abstract][Full Text] [Related]
11. Mechanical characterization of human brain tissue. Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920 [TBL] [Abstract][Full Text] [Related]
12. Influence of pia-arachnoid complex on the indentation response of porcine brain at different length scales. Qian L; Wang S; Zhou S; Sun Y; Zhao H J Mech Behav Biomed Mater; 2022 Mar; 127():104925. PubMed ID: 35074733 [TBL] [Abstract][Full Text] [Related]
13. Mechanical characterization of the human pia-arachnoid complex. Benko N; Luke E; Alsanea Y; Coats B J Mech Behav Biomed Mater; 2021 Aug; 120():104579. PubMed ID: 34020233 [TBL] [Abstract][Full Text] [Related]
14. Mechanical Properties of the Cranial Meninges: A Systematic Review. Walsh DR; Zhou Z; Li X; Kearns J; Newport DT; Mulvihill JJE J Neurotrauma; 2021 Jun; 38(13):1748-1761. PubMed ID: 33191848 [TBL] [Abstract][Full Text] [Related]
15. Utilizing multiple scale models to improve predictions of extra-axial hemorrhage in the immature piglet. Scott GG; Margulies SS; Coats B Biomech Model Mechanobiol; 2016 Oct; 15(5):1101-19. PubMed ID: 26586144 [TBL] [Abstract][Full Text] [Related]
16. Brain Material Properties and Integration of Arachnoid Complex for Biofidelic Impact Response for Human Head Finite Element Model. Rycman A; Bustamante M; Cronin DS Ann Biomed Eng; 2024 Apr; 52(4):908-919. PubMed ID: 38218736 [TBL] [Abstract][Full Text] [Related]
17. Constitutive model for brain tissue under finite compression. Laksari K; Shafieian M; Darvish K J Biomech; 2012 Feb; 45(4):642-6. PubMed ID: 22281404 [TBL] [Abstract][Full Text] [Related]
18. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model. Wang F; Han Y; Wang B; Peng Q; Huang X; Miller K; Wittek A Biomech Model Mechanobiol; 2018 Aug; 17(4):1165-1185. PubMed ID: 29754317 [TBL] [Abstract][Full Text] [Related]
19. Mechanical characterization of brain tissue in simple shear at dynamic strain rates. Rashid B; Destrade M; Gilchrist MD J Mech Behav Biomed Mater; 2013 Dec; 28():71-85. PubMed ID: 23973615 [TBL] [Abstract][Full Text] [Related]
20. Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Bilston LE; Liu Z; Phan-Thien N Biorheology; 2001; 38(4):335-45. PubMed ID: 11673648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]