These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1020 related articles for article (PubMed ID: 24322733)
1. Infrared and reflectron time-of-flight mass spectroscopic analysis of methane (CH4)-carbon monoxide (CO) ices exposed to ionization radiation--toward the formation of carbonyl-bearing molecules in extraterrestrial ices. Kaiser RI; Maity S; Jones BM Phys Chem Chem Phys; 2014 Feb; 16(8):3399-424. PubMed ID: 24322733 [TBL] [Abstract][Full Text] [Related]
2. Formation of complex organic molecules in methanol and methanol-carbon monoxide ices exposed to ionizing radiation--a combined FTIR and reflectron time-of-flight mass spectrometry study. Maity S; Kaiser RI; Jones BM Phys Chem Chem Phys; 2015 Feb; 17(5):3081-114. PubMed ID: 25515545 [TBL] [Abstract][Full Text] [Related]
3. Infrared and reflectron time-of-flight mass spectroscopic study on the synthesis of glycolaldehyde in methanol (CH3OH) and methanol-carbon monoxide (CH3OH-CO) ices exposed to ionization radiation. Maity S; Kaiser RI; Jones BM Faraday Discuss; 2014; 168():485-516. PubMed ID: 25302395 [TBL] [Abstract][Full Text] [Related]
4. Application of Reflectron Time-of-Flight Mass Spectroscopy in the Analysis of Astrophysically Relevant Ices Exposed to Ionization Radiation: Methane (CH4) and D4-Methane (CD4) as a Case Study. Jones BM; Kaiser RI J Phys Chem Lett; 2013 Jun; 4(11):1965-71. PubMed ID: 26283135 [TBL] [Abstract][Full Text] [Related]
5. On the formation of complex organic molecules in the interstellar medium: untangling the chemical complexity of carbon monoxide-hydrocarbon containing ice analogues exposed to ionizing radiation via a combined infrared and reflectron time-of-flight analysis. Abplanalp MJ; Kaiser RI Phys Chem Chem Phys; 2019 Aug; 21(31):16949-16980. PubMed ID: 31339133 [TBL] [Abstract][Full Text] [Related]
6. Laboratory simulation of Kuiper belt object volatile ices under ionizing radiation: CO-N2 ices as a case study. Kim YS; Zhang F; Kaiser RI Phys Chem Chem Phys; 2011 Sep; 13(35):15766-73. PubMed ID: 21687881 [TBL] [Abstract][Full Text] [Related]
7. Exploiting Photoionization Reflectron Time-of-Flight Mass Spectrometry to Explore Molecular Mass Growth Processes to Complex Organic Molecules in Interstellar and Solar System Ice Analogs. Turner AM; Kaiser RI Acc Chem Res; 2020 Dec; 53(12):2791-2805. PubMed ID: 33258604 [TBL] [Abstract][Full Text] [Related]
8. Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3) in interstellar ice analog samples. Bennett CJ; Jamieson CS; Kaiser RI Phys Chem Chem Phys; 2010 Apr; 12(16):4032-50. PubMed ID: 20379495 [TBL] [Abstract][Full Text] [Related]
9. Mechanistical studies on the formation of carbon dioxide in extraterrestrial carbon monoxide ice analog samples. Bennett CJ; Jamieson CS; Kaiser RI Phys Chem Chem Phys; 2009 Jun; 11(21):4210-8. PubMed ID: 19458822 [TBL] [Abstract][Full Text] [Related]
10. Coloration and darkening of methane clathrate and other ices by charged particle irradiation: applications to the outer solar system. Thompson WR; Murray BG; Khare BN; Sagan C J Geophys Res; 1987 Dec; 92(A13):14933-47. PubMed ID: 11542127 [TBL] [Abstract][Full Text] [Related]
11. Formation of Paraldehyde (C Wang J; Turner AM; Marks JH; Fortenberry RC; Kaiser RI Chemphyschem; 2024 Nov; 25(22):e202400837. PubMed ID: 39363694 [TBL] [Abstract][Full Text] [Related]
12. Infrared spectroscopy of Triton and Pluto ice analogs: the case for saturated hydrocarbons. Bohn RB; Sandford SA; Allamandola LJ; Cruikshank DP Icarus; 1994 Sep; 111(1):151-73. PubMed ID: 11539177 [TBL] [Abstract][Full Text] [Related]
13. Exploitation of Synchrotron Radiation Photoionization Mass Spectrometry in the Analysis of Complex Organics in Interstellar Model Ices. Zhu C; Wang H; Medvedkov I; Marks J; Xu M; Yang J; Yang T; Pan Y; Kaiser RI J Phys Chem Lett; 2022 Aug; 13(30):6875-6882. PubMed ID: 35861849 [TBL] [Abstract][Full Text] [Related]
14. Towards the control and inhibition of glycation-the role of the guanidine reaction center with aldehydic and diketonic dicarbonyls. A mass spectrometry study. Saraiva MA; Borges CM; Florêncio MH J Mass Spectrom; 2006 Oct; 41(10):1346-68. PubMed ID: 17039581 [TBL] [Abstract][Full Text] [Related]
15. Laboratory studies of the infrared spectral properties of CO in astrophysical ices. Sandford SA; Allamandola LJ; Tielens AG; Valero GJ Astrophys J; 1988 Jun; 329():498-510. PubMed ID: 11538228 [TBL] [Abstract][Full Text] [Related]
16. On the formation of ozone in oxygen-rich solar system ices via ionizing radiation. Ennis CP; Bennett CJ; Kaiser RI Phys Chem Chem Phys; 2011 May; 13(20):9469-82. PubMed ID: 21483931 [TBL] [Abstract][Full Text] [Related]
17. On the Synthesis of Chocolate Flavonoids (Propanols, Butanals) in the Interstellar Medium. Abplanalp MJ; Góbi S; Bergantini A; Turner AM; Kaiser RI Chemphyschem; 2018 Mar; 19(5):556-560. PubMed ID: 29356279 [TBL] [Abstract][Full Text] [Related]
18. Lyman α photolysis of solid nitromethane (CH3NO2) and D3-nitromethane (CD3NO2)--untangling the reaction mechanisms involved in the decomposition of model energetic materials. Maksyutenko P; Muzangwa LG; Jones BM; Kaiser RI Phys Chem Chem Phys; 2015 Mar; 17(11):7514-27. PubMed ID: 25706523 [TBL] [Abstract][Full Text] [Related]
19. The 2140 cm-1 (4.673 microns) solid CO band: the case for interstellar O2 and N2 and the photochemistry of nonpolar interstellar ice analogs. Elsila J; Allamandola LJ; Sandford SA Astrophys J; 1997 Apr; 479(2 Pt 1):818-38. PubMed ID: 11540158 [TBL] [Abstract][Full Text] [Related]
20. Untangling the methane chemistry in interstellar and solar system ices toward ionizing radiation: a combined infrared and reflectron time-of-flight analysis. Abplanalp MJ; Jones BM; Kaiser RI Phys Chem Chem Phys; 2018 Feb; 20(8):5435-5468. PubMed ID: 28972622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]