BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24322776)

  • 1. A one-pot system for production of L-2-aminobutyric acid from L-threonine by L-threonine deaminase and a NADH-regeneration system based on L-leucine dehydrogenase and formate dehydrogenase.
    Tao R; Jiang Y; Zhu F; Yang S
    Biotechnol Lett; 2014 Apr; 36(4):835-41. PubMed ID: 24322776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A recyclable biotransformation system for L-2-aminobutyric acid production based on immobilized enzyme technology.
    Xu G; Jiang Y; Tao R; Wang S; Zeng H; Yang S
    Biotechnol Lett; 2016 Jan; 38(1):123-9. PubMed ID: 26376640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Synthesis of L-2-aminobutyric acid by leucine dehydrogenase coupling with an NADH regeneration system].
    Zhang L; Xiao Y; Yang W; Hua C; Wang Y; Li J; Yang T
    Sheng Wu Gong Cheng Xue Bao; 2020 May; 36(5):992-1001. PubMed ID: 32567282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Production of L-2-aminobutyric acid from L-threonine using a trienzyme cascade].
    Fu Y; Zhang J; Fu X; Xie Y; Ren H; Liu J; Chen X; Liu L
    Sheng Wu Gong Cheng Xue Bao; 2020 Apr; 36(4):782-791. PubMed ID: 32347072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased productivity of L-2-aminobutyric acid and total turnover number of NAD
    Wang Y; Li GS; Qiao P; Lin L; Xue HL; Zhu L; Wu MB; Lin JP; Yang LR
    Biotechnol Lett; 2018 Dec; 40(11-12):1551-1559. PubMed ID: 30259222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient biosynthesis of L-phenylglycine by an engineered Escherichia coli with a tunable multi-enzyme-coordinate expression system.
    Liu Q; Zhou J; Yang T; Zhang X; Xu M; Rao Z
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2129-2141. PubMed ID: 29352398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of a novel biochemical pathway for the biosynthesis of L-2-aminobutyric acid in Escherichia coli K12.
    Fotheringham IG; Grinter N; Pantaleone DP; Senkpeil RF; Taylor PP
    Bioorg Med Chem; 1999 Oct; 7(10):2209-13. PubMed ID: 10579528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient single whole-cell biotransformation for L-2-aminobutyric acid production through engineering of leucine dehydrogenase combined with expression regulation.
    Chen J; Zhu R; Zhou J; Yang T; Zhang X; Xu M; Rao Z
    Bioresour Technol; 2021 Apr; 326():124665. PubMed ID: 33540211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of (S)-2-aminobutyric acid and (S)-2-aminobutanol in Saccharomyces cerevisiae.
    Weber N; Hatsch A; Labagnere L; Heider H
    Microb Cell Fact; 2017 Mar; 16(1):51. PubMed ID: 28335772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of pyruvate by changing the redox status in Escherichia coli.
    Ojima Y; Suryadarma P; Tsuchida K; Taya M
    Biotechnol Lett; 2012 May; 34(5):889-93. PubMed ID: 22215378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The identification of a robust leucine dehydrogenase from a directed soil metagenome for efficient synthesis of L-2-aminobutyric acid.
    Liu Y; Zhong X; Luo Z; Meng X; Li R; Zhong W; Yang L; Wang H; Wei D
    Biotechnol J; 2023 Aug; 18(8):e2200590. PubMed ID: 37149736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Whole-cell biotransformation for simultaneous synthesis of L-2-aminobutyric acid and D-gluconic acid in recombinant Escherichia coli].
    Zhang C; Yang T; Zhou J; Zheng J; Xu M; Zhang X; Rao Z
    Sheng Wu Gong Cheng Xue Bao; 2017 Dec; 33(12):2028-2034. PubMed ID: 29271180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Rational design of the C-terminal Loop region of leucine dehydrogenase and cascade biosynthesis L-2-aminobutyric acid].
    Chen J; Xu M; Yang T; Zhang X; Shao M; Li H; Rao Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4254-4265. PubMed ID: 34984872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentative production of the unnatural amino acid L-2-aminobutyric acid based on metabolic engineering.
    Xu JM; Li JQ; Zhang B; Liu ZQ; Zheng YG
    Microb Cell Fact; 2019 Feb; 18(1):43. PubMed ID: 30819198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing a Mathematical Equations and Improving the Production of L-tert-Leucine by Uniform Design and Regression Analysis.
    Jiang W; Xu CZ; Jiang SZ; Zhang TD; Wang SZ; Fang BS
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1454-1464. PubMed ID: 27866308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-Rational Engineering of Leucine Dehydrogenase for L-2-Aminobutyric Acid Production.
    Xu JM; Cheng F; Fu FT; Hu HF; Zheng YG
    Appl Biochem Biotechnol; 2017 Jul; 182(3):898-909. PubMed ID: 28000046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of biocatalytic efficiency by increasing substrate loading: enzymatic preparation of L-homophenylalanine.
    Zhang J; Zhu T; Wu X; Chen Y
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8487-94. PubMed ID: 23893309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of optically pure L-phenyllactic acid by using engineered Escherichia coli coexpressing L-lactate dehydrogenase and formate dehydrogenase.
    Zheng Z; Zhao M; Zang Y; Zhou Y; Ouyang J
    J Biotechnol; 2015 Aug; 207():47-51. PubMed ID: 26008622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium.
    Sánchez AM; Bennett GN; San KY
    J Biotechnol; 2005 Jun; 117(4):395-405. PubMed ID: 15925720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein engineering of formate dehydrogenase.
    Tishkov VI; Popov VO
    Biomol Eng; 2006 Jun; 23(2-3):89-110. PubMed ID: 16546445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.