These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Zernike monomials in wide field of view optical designs. Johnson TP; Sasian J Appl Opt; 2020 Aug; 59(22):G146-G153. PubMed ID: 32749327 [TBL] [Abstract][Full Text] [Related]
6. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials. Hou X; Wu F; Yang L; Chen Q Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589 [TBL] [Abstract][Full Text] [Related]
7. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials. Zhao C; Burge JH Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717 [TBL] [Abstract][Full Text] [Related]
8. On a propagation-invariant, orthogonal modal expansion on the unit disk: going beyond Nijboer-Zernike theory of aberrations. El Gawhary O Opt Lett; 2015 Jun; 40(11):2626-9. PubMed ID: 26030574 [TBL] [Abstract][Full Text] [Related]
9. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts. Mahajan VN; Aftab M Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675 [TBL] [Abstract][Full Text] [Related]
10. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials. Zhao C; Burge JH Opt Express; 2007 Dec; 15(26):18014-24. PubMed ID: 19551099 [TBL] [Abstract][Full Text] [Related]
11. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils. Lee H Opt Lett; 2010 Jul; 35(13):2173-5. PubMed ID: 20596184 [TBL] [Abstract][Full Text] [Related]
12. Orthonormal polynomials in wavefront analysis: analytical solution. Mahajan VN; Dai GM J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271 [TBL] [Abstract][Full Text] [Related]
13. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture. Ye J; Gao Z; Wang S; Cheng J; Wang W; Sun W J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2304-11. PubMed ID: 25401259 [TBL] [Abstract][Full Text] [Related]
14. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials. Janssen AJ J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1604-13. PubMed ID: 25121449 [TBL] [Abstract][Full Text] [Related]
16. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils. Mahajan VN Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284 [TBL] [Abstract][Full Text] [Related]
17. Wavefront analysis and Zernike polynomial decomposition for evaluation of corneal optical quality. Oliveira CM; Ferreira A; Franco S J Cataract Refract Surg; 2012 Feb; 38(2):343-56. PubMed ID: 22176886 [TBL] [Abstract][Full Text] [Related]
18. Wave aberration of human eyes and new descriptors of image optical quality and visual performance. Lombardo M; Lombardo G J Cataract Refract Surg; 2010 Feb; 36(2):313-31. PubMed ID: 20152616 [TBL] [Abstract][Full Text] [Related]
19. Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye. Carvalho LA Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):1915-26. PubMed ID: 15914604 [TBL] [Abstract][Full Text] [Related]
20. Jacobi circle and annular polynomials: modal wavefront reconstruction from wavefront gradient. Sun W; Wang S; He X; Xu B J Opt Soc Am A Opt Image Sci Vis; 2018 Jul; 35(7):1140-1148. PubMed ID: 30110306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]