These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces. Hou X; Wu F; Yang L; Wu S; Chen Q Appl Opt; 2006 May; 45(15):3442-55. PubMed ID: 16708088 [TBL] [Abstract][Full Text] [Related]
26. Zernike aberration coefficients transformed to and from Fourier series coefficients for wavefront representation. Dai GM Opt Lett; 2006 Feb; 31(4):501-3. PubMed ID: 16496900 [TBL] [Abstract][Full Text] [Related]
27. Wavefront measurement made by an off-the-shelf laser-scanning pico projector. Chen JW; Liang CW; Chen SH Appl Opt; 2015 Oct; 54(28):E235-40. PubMed ID: 26479659 [TBL] [Abstract][Full Text] [Related]
28. Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials. Robert Iskander D; Davis BA; Collins MJ; Franklin R Ophthalmic Physiol Opt; 2007 May; 27(3):245-55. PubMed ID: 17470237 [TBL] [Abstract][Full Text] [Related]
29. Orthonormal aberration polynomials for optical systems with circular and annular sector pupils. Díaz JA; Mahajan VN Appl Opt; 2013 Feb; 52(6):1136-47. PubMed ID: 23434982 [TBL] [Abstract][Full Text] [Related]
30. Wavefront Aberration Sensor Based on a Multichannel Diffractive Optical Element. Khonina SN; Karpeev SV; Porfirev AP Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664234 [TBL] [Abstract][Full Text] [Related]
31. Method of reconstructing wavefront aberrations by use of Zernike polynomials in radial shearing interferometers. Jeong TM; Ko DK; Lee J Opt Lett; 2007 Feb; 32(3):232-4. PubMed ID: 17215929 [TBL] [Abstract][Full Text] [Related]
32. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials. Mafusire C; Krüger TPJ J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):840-849. PubMed ID: 29877326 [TBL] [Abstract][Full Text] [Related]
33. Wavefront aberrations of x-ray dynamical diffraction beams. Liao K; Hong Y; Sheng W Appl Opt; 2014 Oct; 53(28):6362-70. PubMed ID: 25322219 [TBL] [Abstract][Full Text] [Related]
34. Variational calculus approach to Zernike polynomials with application to FCS. Gligonov I; Enderlein J Biophys J; 2024 Aug; ():. PubMed ID: 39164968 [TBL] [Abstract][Full Text] [Related]
35. Zernike annular polynomials and optical aberrations of systems with annular pupils. Mahajan VN Appl Opt; 1994 Dec; 33(34):8125-7. PubMed ID: 20963042 [TBL] [Abstract][Full Text] [Related]
36. Wavefront aberration function in terms of R. V. Shack's vector product and Zernike polynomial vectors. Gray RW; Rolland JP J Opt Soc Am A Opt Image Sci Vis; 2015 Oct; 32(10):1836-47. PubMed ID: 26479937 [TBL] [Abstract][Full Text] [Related]
37. Orthonormal vector polynomials in a unit circle, Part II : Completing the basis set. Zhao C; Burge JH Opt Express; 2008 Apr; 16(9):6586-91. PubMed ID: 18545361 [TBL] [Abstract][Full Text] [Related]
38. [Solving resolution of diffraction gratings using coefficients of Zernike polynomials]. Yu HL; Qi XD; Bayanheshig ; Tang YG Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jan; 32(1):264-7. PubMed ID: 22497173 [TBL] [Abstract][Full Text] [Related]
40. Linear phase retrieval with a single far-field image based on Zernike polynomials. Li M; Li XY Opt Express; 2009 Aug; 17(17):15257-63. PubMed ID: 19688004 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]