These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24323014)

  • 1. Computationally efficient finite-difference modal method for the solution of Maxwell's equations.
    Semenikhin I; Zanuccoli M
    J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2531-8. PubMed ID: 24323014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated solution of the frequency-domain Maxwell's equations by engineering the eigenvalue distribution of the operator.
    Shin W; Fan S
    Opt Express; 2013 Sep; 21(19):22578-95. PubMed ID: 24104147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near- to far-field transformation in the aperiodic Fourier modal method.
    Rook R; Pisarenco M; Setija ID
    Appl Opt; 2013 Oct; 52(28):6962-8. PubMed ID: 24085211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.
    Wan X; Li Z
    Discrete Continuous Dyn Syst Ser B; 2012 Jun; 17(4):1155-1174. PubMed ID: 22701346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem.
    Hesthaven JS; Warburton T
    Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):493-524. PubMed ID: 15306505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings.
    Edee K
    J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2006-13. PubMed ID: 21979505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution of the inhomogeneous Maxwell's equations using a Born series.
    Krüger B; Brenner T; Kienle A
    Opt Express; 2017 Oct; 25(21):25165-25182. PubMed ID: 29041187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solving the full anisotropic liquid crystal waveguides by using an iterative pseudospectral-based eigenvalue method.
    Huang CC
    Opt Express; 2011 Feb; 19(4):3363-78. PubMed ID: 21369159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-element solution of Maxwell's equations with Helmholtz forms.
    Paulsen KD
    J Opt Soc Am A Opt Image Sci Vis; 1994 Apr; 11(4):1434-44. PubMed ID: 8189287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conservative finite-difference scheme for the problem of THz pulse interaction with multilevel layer covered by disordered structure based on the density matrix formalism and 1D Maxwell's equation.
    Trofimov VA; Varentsova SA; Zakharova IG; Zagursky DY
    PLoS One; 2018; 13(8):e0201572. PubMed ID: 30070996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: application to the study of a radar dome.
    Belkhir A; Baida FI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056701. PubMed ID: 18643189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iterative techniques for computing the linearized manifolds of quasiperiodic tori.
    Wysham DB; Meiss JD
    Chaos; 2006 Jun; 16(2):023129. PubMed ID: 16822032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple yet effective analysis of waveguide mode symmetry: generalized eigenvalue approach based on Maxwell's equations.
    Guo W; Wu Y; Xiong Z; Jing Y; Chen Y
    Opt Express; 2022 Oct; 30(21):37910-37924. PubMed ID: 36258370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast modal method for crossed grating computation, combining finite formulation of Maxwell equations with polynomial approximated constitutive relations.
    Portier B; Pardo F; Bouchon P; Haïdar R; Pelouard JL
    J Opt Soc Am A Opt Image Sci Vis; 2013 Apr; 30(4):573-81. PubMed ID: 23595315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technique for handling wave propagation specific effects in biological tissue: mapping of the photon transport equation to Maxwell's equations.
    Handapangoda CC; Premaratne M; Paganin DM; Hendahewa PR
    Opt Express; 2008 Oct; 16(22):17792-807. PubMed ID: 18958061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast semi-analytical solution of Maxwell's equations in Born approximation for periodic structures.
    Pisarenco M; Quintanilha R; van Kraaij MG; Coene WM
    J Opt Soc Am A Opt Image Sci Vis; 2016 Apr; 33(4):610-7. PubMed ID: 27140770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low-order unstructured-mesh approach for computational electromagnetics in the time domain.
    El Hachemi M; Hassan O; Morgan K; Rowse D; Weatherill N
    Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):445-69. PubMed ID: 15306503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Solution of the Electronic Eigenvalue Problem Using Wavepacket Propagation.
    Neville SP; Schuurman MS
    J Chem Theory Comput; 2018 Mar; 14(3):1433-1441. PubMed ID: 29394052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solutions of Maxwell's equations in presence of lamellar gratings including infinitely conducting metal.
    Gralak B; Pierre R; Tayeb G; Enoch S
    J Opt Soc Am A Opt Image Sci Vis; 2008 Dec; 25(12):3099-110. PubMed ID: 19037402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.