These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 24323153)
1. Propagation equation of Hermite-Gauss beams through a complex optical system with apertures and its application to focal shift. Peng S; Jin G; Tingfeng W J Opt Soc Am A Opt Image Sci Vis; 2013 Jul; 30(7):1381-6. PubMed ID: 24323153 [TBL] [Abstract][Full Text] [Related]
2. Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical system. Zhou G Opt Express; 2010 Mar; 18(5):4637-43. PubMed ID: 20389475 [TBL] [Abstract][Full Text] [Related]
3. M Zeng X; Hui Z; Zhang M Appl Opt; 2018 Sep; 57(27):7667-7672. PubMed ID: 30462026 [TBL] [Abstract][Full Text] [Related]
4. Paraxial propagation of a partially coherent Hermite-Gaussian beam through aligned and misaligned ABCD optical systems. Cai Y; Chen C J Opt Soc Am A Opt Image Sci Vis; 2007 Aug; 24(8):2394-401. PubMed ID: 17621342 [TBL] [Abstract][Full Text] [Related]
5. Propagation of a general-type beam through a truncated fractional Fourier transform optical system. Zhao C; Cai Y J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):637-47. PubMed ID: 20208958 [TBL] [Abstract][Full Text] [Related]
6. Focal shift of focused truncated Lorentz-Gauss beam. Zhou G J Opt Soc Am A Opt Image Sci Vis; 2008 Oct; 25(10):2594-9. PubMed ID: 18830337 [TBL] [Abstract][Full Text] [Related]
7. Propagation of flat-topped multi-Gaussian beams through an apertured ABCD optical system. Gao YQ; Zhu BQ; Liu DZ; Lin ZQ J Opt Soc Am A Opt Image Sci Vis; 2009 Oct; 26(10):2139-46. PubMed ID: 19798391 [TBL] [Abstract][Full Text] [Related]
8. Theory of diffraction of vortex beams from structured apertures and generation of elegant elliptical vortex Hermite-Gaussian beams. Hebri D; Rasouli S; Dezfouli AM J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):839-852. PubMed ID: 31045012 [TBL] [Abstract][Full Text] [Related]
9. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders. Wang F; Cai Y; Korotkova O Opt Express; 2009 Dec; 17(25):22366-79. PubMed ID: 20052160 [TBL] [Abstract][Full Text] [Related]
10. Geometrical representation of Gaussian beams propagating through complex paraxial optical systems. Andrews LC; Miller WB; Ricklin JC Appl Opt; 1993 Oct; 32(30):5918-29. PubMed ID: 20856413 [TBL] [Abstract][Full Text] [Related]
11. Propagation of hollow Gaussian beams through apertured paraxial optical systems. Cai Y; He S J Opt Soc Am A Opt Image Sci Vis; 2006 Jun; 23(6):1410-8. PubMed ID: 16715160 [TBL] [Abstract][Full Text] [Related]
12. Propagation equation of Gaussian beams through apertured focusing systems and parametric study of focal shift. Sun P; Liu J; Guan J; Wang G; Yu Y J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):818-825. PubMed ID: 31045009 [TBL] [Abstract][Full Text] [Related]
13. Spatially truncated Gaussian pulsed beam and its application in modeling diffraction of ultrashort pulses from hard apertures. Worku NG; Gross H J Opt Soc Am A Opt Image Sci Vis; 2020 Feb; 37(2):317-326. PubMed ID: 32118913 [TBL] [Abstract][Full Text] [Related]
14. Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere. Zhou G; Chu X Opt Express; 2010 Jan; 18(2):726-31. PubMed ID: 20173892 [TBL] [Abstract][Full Text] [Related]
15. Oriented Gaussian beams for high-accuracy computation with accuracy control of X-ray propagation through a multi-lens system. Wojda P; Kshevetskii S J Synchrotron Radiat; 2019 Mar; 26(Pt 2):363-372. PubMed ID: 30855244 [TBL] [Abstract][Full Text] [Related]
16. Matrix representation of axisymmetric optical systems including spatial filters. Vicari L; Bloisi F Appl Opt; 1989 Nov; 28(21):4682-6. PubMed ID: 20555932 [TBL] [Abstract][Full Text] [Related]
17. Focal shift in vector beams. Greene P; Hall D Opt Express; 1999 May; 4(10):411-9. PubMed ID: 19396297 [TBL] [Abstract][Full Text] [Related]
18. Analytical beam propagation model for clipped focused-Gaussian beams using vector diffraction theory. Gillen GD; Seck CM; Guha S Opt Express; 2010 Mar; 18(5):4023-40. PubMed ID: 20389417 [TBL] [Abstract][Full Text] [Related]
19. Bessel-Gauss beams as rigorous solutions of the Helmholtz equation. April A J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2100-7. PubMed ID: 21979515 [TBL] [Abstract][Full Text] [Related]
20. Hermite-sine-Gaussian and Hermite-sinh-Gaussian laser beams in turbulent atmosphere. Eyyuboğlu HT; Baykal Y J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2709-18. PubMed ID: 16396032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]