These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24323202)

  • 1. WO3-α-Fe2O3 composite photoelectrodes with low onset potential for solar water oxidation.
    Zhao P; Kronawitter CX; Yang X; Fu J; Koel BE
    Phys Chem Chem Phys; 2014 Jan; 16(4):1327-32. PubMed ID: 24323202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Efficient Photoelectrochemical Hydrogen Generation Using Zn(x)Bi2S(3+x) Sensitized Platelike WO₃ Photoelectrodes.
    Liu C; Yang Y; Li W; Li J; Li Y; Shi Q; Chen Q
    ACS Appl Mater Interfaces; 2015 May; 7(20):10763-70. PubMed ID: 25942616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure of WO3 Photoanodes to Ultraviolet Light Enhances Photoelectrochemical Water Oxidation.
    Li T; He J; Peña B; Berlinguette CP
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25010-3. PubMed ID: 27644107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pt-functionalized Fe2O3 photoanodes for solar water splitting: the role of hematite nano-organization and the platinum redox state.
    Warwick ME; Barreca D; Bontempi E; Carraro G; Gasparotto A; Maccato C; Kaunisto K; Ruoko TP; Lemmetyinen H; Sada C; Gönüllü Y; Mathur S
    Phys Chem Chem Phys; 2015 May; 17(19):12899-907. PubMed ID: 25909639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotextured Spikes of α-Fe
    Hussain S; Tavakoli MM; Waleed A; Virk US; Yang S; Waseem A; Fan Z; Nadeem MA
    Langmuir; 2018 Mar; 34(12):3555-3564. PubMed ID: 29537275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ growth of α-Fe
    Li C; Chen Z; Yuan W; Xu QH; Li CM
    Nanoscale; 2019 Jan; 11(3):1111-1122. PubMed ID: 30574647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
    Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W
    Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of charge transfer cascades in α-Fe
    Minguzzi A; Naldoni A; Lugaresi O; Achilli E; D'Acapito F; Malara F; Locatelli C; Vertova A; Rondinini S; Ghigna P
    Phys Chem Chem Phys; 2017 Feb; 19(8):5715-5720. PubMed ID: 28230223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation.
    Zhu C; Li C; Zheng M; Delaunay JJ
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22355-63. PubMed ID: 26400020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials.
    Mayer MT; Du C; Wang D
    J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-Electrode Interface Engineering by an Electron-Transport Layer in Hematite Photoanode.
    Ding C; Wang Z; Shi J; Yao T; Li A; Yan P; Huang B; Li C
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7086-91. PubMed ID: 26926845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Engineering of Anodic WO
    Syrek K; Kotarba S; Zych M; Pisarek M; Uchacz T; Sobańska K; Pięta Ł; Sulka GD
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36752-36762. PubMed ID: 38968082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Onset potential behavior in α-Fe2O3 photoanodes: the influence of surface and diffusion Sn doping on the surface states.
    Shinde PS; Choi SH; Kim Y; Ryu J; Jang JS
    Phys Chem Chem Phys; 2016 Jan; 18(4):2495-509. PubMed ID: 26698132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective silicon nanowire arrays/WO
    Chen Z; Ning M; Ma G; Meng Q; Zhang Y; Gao J; Jin M; Chen Z; Yuan M; Wang X; Liu JM; Zhou G
    Nanotechnology; 2017 Jul; 28(27):275401. PubMed ID: 28531092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of CuFe
    Hussain S; Hussain S; Waleed A; Tavakoli MM; Wang Z; Yang S; Fan Z; Nadeem MA
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35315-35322. PubMed ID: 28027650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles.
    Chen B; Fan W; Mao B; Shen H; Shi W
    Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A scalable colloidal approach to prepare hematite films for efficient solar water splitting.
    Zong X; Thaweesak S; Xu H; Xing Z; Zou J; Lu GM; Wang L
    Phys Chem Chem Phys; 2013 Aug; 15(29):12314-21. PubMed ID: 23778329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ synthesis of Bi2S3 sensitized WO3 nanoplate arrays with less interfacial defects and enhanced photoelectrochemical performance.
    Liu C; Yang Y; Li W; Li J; Li Y; Chen Q
    Sci Rep; 2016 Mar; 6():23451. PubMed ID: 26988275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.