These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 24323266)

  • 1. Optical solver of combinatorial problems: nanotechnological approach.
    Cohen E; Dolev S; Frenkel S; Kryzhanovsky B; Palagushkin A; Rosenblit M; Zakharov V
    J Opt Soc Am A Opt Image Sci Vis; 2013 Sep; 30(9):1845-53. PubMed ID: 24323266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallelizing Assignment Problem with DNA Strands.
    Khorsand B; Savadi A; Naghibzadeh M
    Iran J Biotechnol; 2020 Jan; 18(1):e2547. PubMed ID: 32884959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations.
    Troyer M; Wiese UJ
    Phys Rev Lett; 2005 May; 94(17):170201. PubMed ID: 15904269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving the 0/1 knapsack problem by a biomolecular DNA computer.
    Taghipour H; Rezaei M; Esmaili HA
    Adv Bioinformatics; 2013; 2013():341419. PubMed ID: 23509451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics.
    Aono M; Naruse M; Kim SJ; Wakabayashi M; Hori H; Ohtsu M; Hara M
    Langmuir; 2013 Jun; 29(24):7557-64. PubMed ID: 23565603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general resolution of intractable problems in polynomial time through DNA Computing.
    Sanches CA; Soma NY
    Biosystems; 2016 Dec; 150():119-131. PubMed ID: 27693626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing.
    Wang Z; Pu J; Cao L; Tan J
    Int J Mol Sci; 2015 Oct; 16(10):25338-52. PubMed ID: 26512650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From cells to computers: computing with membranes (P systems).
    Păun G
    Biosystems; 2001 Mar; 59(3):139-58. PubMed ID: 11311465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Identification of the Hamiltonian Cycle Using a Circular Structure Assisted DNA Computer.
    Sharma D; Ramteke M
    ACS Comb Sci; 2020 May; 22(5):225-231. PubMed ID: 32212630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Something has to give: scaling combinatorial computing by biological agents exploring physical networks encoding NP-complete problems.
    van Delft FCMJM; Ipolitti G; Nicolau DV; Sudalaiyadum Perumal A; Kašpar O; Kheireddine S; Wachsmann-Hogiu S; Nicolau DV
    Interface Focus; 2018 Dec; 8(6):20180034. PubMed ID: 30443332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel computation with molecular-motor-propelled agents in nanofabricated networks.
    Nicolau DV; Lard M; Korten T; van Delft FC; Persson M; Bengtsson E; Månsson A; Diez S; Linke H; Nicolau DV
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2591-6. PubMed ID: 26903637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CLIQUE algorithm using DNA computing techniques based on closed-circle DNA sequences.
    Zhang H; Liu X
    Biosystems; 2011 Jul; 105(1):73-82. PubMed ID: 21511001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is optimal solution of every NP-complete or NP-hard problem determined from its characteristic for DNA-based computing.
    Guo M; Chang WL; Ho M; Lu J; Cao J
    Biosystems; 2005 Apr; 80(1):71-82. PubMed ID: 15740836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA computing using single-molecule hybridization detection.
    Schmidt KA; Henkel CV; Rozenberg G; Spaink HP
    Nucleic Acids Res; 2004; 32(17):4962-8. PubMed ID: 15388798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel computing applied to breeding value estimation in dairy cattle.
    Strandén I; Lidauer M
    J Dairy Sci; 2001 Jan; 84(1):276-85. PubMed ID: 11210042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polynomial convolution algorithm for matrix multiplication with application for optical computing.
    Barakat R; Reif J
    Appl Opt; 1987 Jul; 26(14):2707-11. PubMed ID: 20489949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Qualifying quantum approaches for hard industrial optimization problems. A case study in the field of smart-charging of electric vehicles.
    Dalyac C; Henriet L; Jeandel E; Lechner W; Perdrix S; Porcheron M; Veshchezerova M
    EPJ Quantum Technol; 2021; 8(1):12. PubMed ID: 34723197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA computing on surfaces.
    Liu Q; Wang L; Frutos AG; Condon AE; Corn RM; Smith LM
    Nature; 2000 Jan; 403(6766):175-9. PubMed ID: 10646598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct construction of an optical linear transform and its application on optical complex data generation.
    Wu L; Zhang Z
    Opt Express; 2022 Jan; 30(2):1793-1807. PubMed ID: 35209334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and simulation methodology for digital optical computing systems.
    Louri A; Na J
    Appl Opt; 1994 Mar; 33(8):1549-58. PubMed ID: 20862182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.