These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24323271)

  • 1. Absorption and scattering by long and randomly oriented linear chains of spheres.
    Lee E; Pilon L
    J Opt Soc Am A Opt Image Sci Vis; 2013 Sep; 30(9):1892-900. PubMed ID: 24323271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorption and scattering by bispheres, quadspheres, and circular rings of spheres and their equivalent coated spheres.
    Heng RL; Sy KC; Pilon L
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jan; 32(1):46-60. PubMed ID: 26366489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light scattering and absorption by randomly-oriented cylinders: dependence on aspect ratio for refractive indices applicable for marine particles.
    Gordon HR
    Opt Express; 2011 Feb; 19(5):4673-91. PubMed ID: 21369299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength.
    Mishchenko MI
    Appl Opt; 1993 Aug; 32(24):4652-66. PubMed ID: 20830130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second harmonic generation in three-dimensional structures based on homogeneous centrosymmetric metallic spheres.
    Xu J; Zhang X
    Opt Express; 2012 Jan; 20(2):1668-84. PubMed ID: 22274509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scattering of light by polydisperse, randomly oriented, finite circular cylinders.
    Mishchenko MI; Travis LD; Macke A
    Appl Opt; 1996 Aug; 35(24):4927-40. PubMed ID: 21102919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light scattering by randomly oriented spheroidal particles.
    Asano S; Sato M
    Appl Opt; 1980 Mar; 19(6):962-74. PubMed ID: 20220965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media.
    Capoğlu IR; Rogers JD; Taflove A; Backman V
    Opt Lett; 2009 Sep; 34(17):2679-81. PubMed ID: 19724530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):524-8. PubMed ID: 15769036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angularly resolved light scattering from aerosolized spores: observations and calculations.
    Auger JC; Aptowicz KB; Pinnick RG; Pan YL; Chang RK
    Opt Lett; 2007 Nov; 32(22):3358-60. PubMed ID: 18026307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences between sound scattering by weakly scattering spheres and finite-length cylinders with applications to sound scattering by zooplankton.
    Stanton TK; Wiebe PH; Chu D
    J Acoust Soc Am; 1998 Jan; 103(1):254-64. PubMed ID: 9440327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation characteristics and optical properties of filamentous cyanobacterium Anabaena cylindrica.
    Heng RL; Lee E; Pilon L
    J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):836-45. PubMed ID: 24695147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations.
    Graaff R; Aarnoudse JG; Zijp JR; Sloot PM; de Mul FF; Greve J; Koelink MH
    Appl Opt; 1992 Apr; 31(10):1370-6. PubMed ID: 20720767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetry coefficient for large optically soft spherical particles.
    Shepelevich NV; Prostakova IV; Lopatin VN
    J Biomed Opt; 2002 Jul; 7(3):493-7. PubMed ID: 12175302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scattering of an electromagnetic plane wave by a sphere embedded in a cylinder.
    Mangini F; Tedeschi N
    J Opt Soc Am A Opt Image Sci Vis; 2017 May; 34(5):760-769. PubMed ID: 28463320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling phase functions in biological tissue.
    Gong W; Si K; Sheppard CJ
    Opt Lett; 2008 Jul; 33(14):1599-601. PubMed ID: 18628810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scattering by two rayleigh-debye spheres.
    Olaof GO
    Appl Opt; 1970 Feb; 9(2):429-37. PubMed ID: 20076206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations.
    Voit F; Schäfer J; Kienle A
    Opt Lett; 2009 Sep; 34(17):2593-5. PubMed ID: 19724500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scattering of light by bispheres with touching and separated components.
    Mishchenko MI; Mackowski DW; Travis LD
    Appl Opt; 1995 Jul; 34(21):4589-99. PubMed ID: 21052291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetic scattering by arbitrarily oriented ice cylinders.
    Liou KN
    Appl Opt; 1972 Mar; 11(3):667-74. PubMed ID: 20111565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.