These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs. Primack RB; Laube J; Gallinat AS; Menzel A Ann Bot; 2015 Nov; 116(6):889-97. PubMed ID: 25851135 [TBL] [Abstract][Full Text] [Related]
3. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming. Marchin RM; Salk CF; Hoffmann WA; Dunn RR Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981 [TBL] [Abstract][Full Text] [Related]
4. The Interactive Effects of Chilling, Photoperiod, and Forcing Temperature on Flowering Phenology of Temperate Woody Plants. Wang H; Wang H; Ge Q; Dai J Front Plant Sci; 2020; 11():443. PubMed ID: 32373144 [TBL] [Abstract][Full Text] [Related]
5. Increased exposure to chilling advances the time to budburst in North American tree species. Nanninga C; Buyarski CR; Pretorius AM; Montgomery RA Tree Physiol; 2017 Dec; 37(12):1727-1738. PubMed ID: 29099953 [TBL] [Abstract][Full Text] [Related]
6. The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation. Fu YH; Campioli M; Deckmyn G; Janssens IA PLoS One; 2012; 7(10):e47324. PubMed ID: 23071786 [TBL] [Abstract][Full Text] [Related]
7. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures. Viherä-Aarnio A; Sutinen S; Partanen J; Häkkinen R Tree Physiol; 2014 May; 34(5):547-56. PubMed ID: 24876293 [TBL] [Abstract][Full Text] [Related]
8. Effectiveness of winter temperatures for satisfying chilling requirements for reproductive budburst of red alder ( Prevéy JS; Harrington CA PeerJ; 2018; 6():e5221. PubMed ID: 30280010 [TBL] [Abstract][Full Text] [Related]
9. Shifting and extension of phenological periods with increasing temperature along elevational transects in southern Bavaria. Schuster C; Estrella N; Menzel A Plant Biol (Stuttg); 2014 Mar; 16(2):332-44. PubMed ID: 23957276 [TBL] [Abstract][Full Text] [Related]
10. Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring. Signarbieux C; Toledano E; Sanginés de Carcer P; Fu YH; Schlaepfer R; Buttler A; Vitasse Y Glob Chang Biol; 2017 Nov; 23(11):4569-4580. PubMed ID: 28464396 [TBL] [Abstract][Full Text] [Related]
11. Chilled to be forced: the best dose to wake up buds from winter dormancy. Baumgarten F; Zohner CM; Gessler A; Vitasse Y New Phytol; 2021 May; 230(4):1366-1377. PubMed ID: 33577087 [TBL] [Abstract][Full Text] [Related]
12. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. Flynn DFB; Wolkovich EM New Phytol; 2018 Sep; 219(4):1353-1362. PubMed ID: 29870050 [TBL] [Abstract][Full Text] [Related]
13. Genetic differentiation in the timing of budburst in Fagus crenata in relation to temperature and photoperiod. Osada N; Murase K; Tsuji K; Sawada H; Nunokawa K; Tsukahara M; Hiura T Int J Biometeorol; 2018 Sep; 62(9):1763-1776. PubMed ID: 29978264 [TBL] [Abstract][Full Text] [Related]
14. Simulation of forest tree species' bud burst dates for different climate scenarios: chilling requirements and photo-period may limit bud burst advancement. Lange M; Schaber J; Marx A; Jäckel G; Badeck FW; Seppelt R; Doktor D Int J Biometeorol; 2016 Nov; 60(11):1711-1726. PubMed ID: 27059366 [TBL] [Abstract][Full Text] [Related]
15. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species. Harrington CA; Gould PJ Front Plant Sci; 2015; 6():120. PubMed ID: 25784922 [TBL] [Abstract][Full Text] [Related]
16. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades. Wenden B; Mariadassou M; Chmielewski FM; Vitasse Y Glob Chang Biol; 2020 Mar; 26(3):1808-1819. PubMed ID: 31724292 [TBL] [Abstract][Full Text] [Related]
17. Declining global warming effects on the phenology of spring leaf unfolding. Fu YH; Zhao H; Piao S; Peaucelle M; Peng S; Zhou G; Ciais P; Huang M; Menzel A; Peñuelas J; Song Y; Vitasse Y; Zeng Z; Janssens IA Nature; 2015 Oct; 526(7571):104-7. PubMed ID: 26416746 [TBL] [Abstract][Full Text] [Related]
18. Late spring freezes coupled with warming winters alter temperate tree phenology and growth. Chamberlain CJ; Wolkovich EM New Phytol; 2021 Aug; 231(3):987-995. PubMed ID: 33932291 [TBL] [Abstract][Full Text] [Related]
19. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Güsewell S; Furrer R; Gehrig R; Pietragalla B Glob Chang Biol; 2017 Dec; 23(12):5189-5202. PubMed ID: 28586135 [TBL] [Abstract][Full Text] [Related]
20. Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region. Yang Y; Wu Z; Guo L; He HS; Ling Y; Wang L; Zong S; Na R; Du H; Li MH Sci Total Environ; 2020 Jul; 725():138323. PubMed ID: 32298892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]