These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 24323543)

  • 1. Efficient and robust reforming catalyst in severe reaction conditions by nanoprecursor reduction in confined space.
    Dacquin JP; Sellam D; Batiot-Dupeyrat C; Tougerti A; Duprez D; Royer S
    ChemSusChem; 2014 Feb; 7(2):631-7. PubMed ID: 24323543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2.
    Wang K; Li X; Ji S; Huang B; Li C
    ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative methane reforming with an intelligent catalyst: sintering-tolerant supported nickel nanoparticles.
    Deng J; Cai M; Sun W; Liao X; Chu W; Zhao XS
    ChemSusChem; 2013 Nov; 6(11):2061-5. PubMed ID: 24124009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity.
    Budi CS; Wu HC; Chen CS; Saikia D; Kao HM
    ChemSusChem; 2016 Sep; 9(17):2326-31. PubMed ID: 27531065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ni-SiO₂ catalysts for the carbon dioxide reforming of methane: varying support properties by flame spray pyrolysis.
    Lovell EC; Scott J; Amal R
    Molecules; 2015 Mar; 20(3):4594-609. PubMed ID: 25774491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Ni:SiO2 nanocomposite to control the carbon deposition on the carbon dioxide reforming of methane.
    Carreño NL; Leite ER; Longo E; Lisboa-Filho PN; Valentini A; Probst LF; Schreiner WH
    J Nanosci Nanotechnol; 2002 Oct; 2(5):491-4. PubMed ID: 12908285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured Nickel Aluminate as a Key Intermediate for the Production of Highly Dispersed and Stable Nickel Nanoparticles Supported within Mesoporous Alumina for Dry Reforming of Methane.
    Karam L; Reboul J; El Hassan N; Nelayah J; Massiani P
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31739418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane.
    Kawi S; Kathiraser Y; Ni J; Oemar U; Li Z; Saw ET
    ChemSusChem; 2015 Nov; 8(21):3556-75. PubMed ID: 26440576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of mesoporous silica with embedded nickel nanoparticles for catalyst applications.
    Leite ER; Carreño NL; Longo E; Valentini A; Probst LF
    J Nanosci Nanotechnol; 2002 Feb; 2(1):89-94. PubMed ID: 12908326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO2 reforming of CH4 over CeO2-doped Ni/Al2O3 nanocatalyst treated by non-thermal plasma.
    Rahemi N; Haghighi M; Babaluo AA; Jafari MF; Estifaee P
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4896-908. PubMed ID: 23901509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide.
    Hao ZP; Hu C; Jiang Z; Lu GQ
    J Environ Sci (China); 2004; 16(2):316-20. PubMed ID: 15137662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical copper-decorated nickel nanocatalysts supported on La2O3 for low-temperature steam reforming of ethanol.
    Liu JY; Su WN; Rick J; Yang SC; Cheng JH; Pan CJ; Lee JF; Hwang BJ
    ChemSusChem; 2014 Feb; 7(2):570-6. PubMed ID: 24307476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts.
    Sun J; Bao X
    Chemistry; 2008; 14(25):7478-88. PubMed ID: 18668502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst.
    Wu Z; Lv Y; Xia Y; Webley PA; Zhao D
    J Am Chem Soc; 2012 Feb; 134(4):2236-45. PubMed ID: 22257228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pt nanoparticles residing in the pores of porous LaNiO₃ nanocubes as high-efficiency electrocatalyst for direct methanol fuel cells.
    Yu N; Kuai L; Wang Q; Geng B
    Nanoscale; 2012 Sep; 4(17):5386-93. PubMed ID: 22820999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane.
    Al-Doghachi FA; Islam A; Zainal Z; Saiman MI; Embong Z; Taufiq-Yap YH
    PLoS One; 2016; 11(1):e0145862. PubMed ID: 26745623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of iron-based mesoporous silica for the CWPO of phenol: a comparison between impregnation and co-condensation routes.
    Xiang L; Royer S; Zhang H; Tatibouët JM; Barrault J; Valange S
    J Hazard Mater; 2009 Dec; 172(2-3):1175-84. PubMed ID: 19709804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.