These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 24323546)

  • 1. Chemical proteomic strategies for the discovery and development of anticancer drugs.
    Liu Y; Guo M
    Proteomics; 2014 Mar; 14(4-5):399-411. PubMed ID: 24323546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of molecular targets of natural products by mass spectrometry.
    Cheng KW; Wong CC; Wang M; He QY; Chen F
    Mass Spectrom Rev; 2010; 29(1):126-55. PubMed ID: 19319922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative oncoproteomics strategies for anticancer drug discovery.
    Liu R; Wang K; Yuan K; Wei Y; Huang C
    Expert Rev Proteomics; 2010 Jun; 7(3):411-29. PubMed ID: 20536311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemistry-based functional proteomics for drug target deconvolution.
    Wang K; Yang T; Wu Q; Zhao X; Nice EC; Huang C
    Expert Rev Proteomics; 2012 Jun; 9(3):293-310. PubMed ID: 22809208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target identification with quantitative activity based protein profiling (ABPP).
    Chen X; Wong YK; Wang J; Zhang J; Lee YM; Shen HM; Lin Q; Hua ZC
    Proteomics; 2017 Feb; 17(3-4):. PubMed ID: 27723264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemoproteomic approaches to drug target identification and drug profiling.
    Bantscheff M; Drewes G
    Bioorg Med Chem; 2012 Mar; 20(6):1973-8. PubMed ID: 22130419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical proteomics and its impact on the drug discovery process.
    Miao Q; Zhang CC; Kast J
    Expert Rev Proteomics; 2012 Jun; 9(3):281-91. PubMed ID: 22809207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics approaches for myeloid leukemia drug discovery.
    Kapoor I; Pal P; Lochab S; Kanaujiya JK; Trivedi AK
    Expert Opin Drug Discov; 2012 Dec; 7(12):1165-75. PubMed ID: 22971110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in microwave-assisted protein chemistries - can this be integrated into the drug discovery and validation process?
    Sandoval WN; Pham VC; Lill JR
    Drug Discov Today; 2008 Dec; 13(23-24):1075-81. PubMed ID: 18801456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of salivary proteomics in drug discovery and development: a focus on cancer drug discovery.
    Hu S; Yen Y; Ann D; Wong DT
    Drug Discov Today; 2007 Nov; 12(21-22):911-6. PubMed ID: 17993408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oncoproteomics.
    Joshi S; Tiwari AK; Mondal B; Sharma A
    Clin Chim Acta; 2011 Jan; 412(3-4):217-26. PubMed ID: 20955692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticancer drug discovery in the future: an evolutionary perspective.
    Ma X; Wang Z
    Drug Discov Today; 2009 Dec; 14(23-24):1136-42. PubMed ID: 19800414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer proteomics and its application to discovery of therapy response markers in human cancer.
    Smith L; Lind MJ; Welham KJ; Cawkwell L;
    Cancer; 2006 Jul; 107(2):232-41. PubMed ID: 16752413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural products and their biological targets: proteomic and metabolomic labeling strategies.
    Böttcher T; Pitscheider M; Sieber SA
    Angew Chem Int Ed Engl; 2010 Apr; 49(15):2680-98. PubMed ID: 20333627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic approaches for the identification of cell cycle-related drug targets.
    Flory MR; Aebersold R
    Prog Cell Cycle Res; 2003; 5():167-71. PubMed ID: 14593710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target identification for biologically active small molecules using chemical biology approaches.
    Lee H; Lee JW
    Arch Pharm Res; 2016 Sep; 39(9):1193-201. PubMed ID: 27387321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives.
    Zhou L; Wang K; Li Q; Nice EC; Zhang H; Huang C
    Expert Rev Proteomics; 2016; 13(4):367-81. PubMed ID: 26923776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.