These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2432362)

  • 1. Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo.
    Glover JC; Petursdottir G; Jansen JK
    J Neurosci Methods; 1986 Nov; 18(3):243-54. PubMed ID: 2432362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Lysine and TRITC Conjugation on the Size and Structure of Dextran Nanoconjugates with Potential for Biomolecule Delivery to Neurons.
    Zeini D; Glover JC; Knudsen KD; Nyström B
    ACS Appl Bio Mater; 2021 Sep; 4(9):6832-6842. PubMed ID: 35006983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast axonal diffusion of 3000 molecular weight dextran amines.
    Fritzsch B
    J Neurosci Methods; 1993 Oct; 50(1):95-103. PubMed ID: 7506342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axonal collateral-collateral transport of tract tracers in brain neurons: false anterograde labelling and useful tool.
    Chen S; Aston-Jones G
    Neuroscience; 1998 Feb; 82(4):1151-63. PubMed ID: 9466437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracing Central Nervous System Axon Regeneration in
    Gibbs KM; Szaro BG
    Cold Spring Harb Protoc; 2018 Dec; 2018(12):. PubMed ID: 29769393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential double labelling with different fluorescent dyes coupled to dextran amines as a tool to estimate the accuracy of tracer application and of regeneration.
    Fritzsch B; Sonntag R
    J Neurosci Methods; 1991 Aug; 39(1):9-17. PubMed ID: 1722269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies.
    Veenman CL; Reiner A; Honig MG
    J Neurosci Methods; 1992 Mar; 41(3):239-54. PubMed ID: 1381034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: applications and pitfalls.
    Nance DM; Burns J
    Brain Res Bull; 1990 Jul; 25(1):139-45. PubMed ID: 1698517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional fluorescent labelling techniques for the developing and regenerating visual system.
    Thanos S
    Acta Histochem Suppl; 1990; 38():259-67. PubMed ID: 2080245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axonal arborization in the developing chick retinotectal system.
    Thanos S; Bonhoeffer F
    J Comp Neurol; 1987 Jul; 261(1):155-64. PubMed ID: 3624542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anterograde and retrograde axonal transport of biotinylated dextran amine and biocytin in the nervous system of teleosts.
    Xue HG; Yang CY; Ito H
    Brain Res Brain Res Protoc; 2004 Jun; 13(2):106-14. PubMed ID: 15171993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey.
    Shink E; Bevan MD; Bolam JP; Smith Y
    Neuroscience; 1996 Jul; 73(2):335-57. PubMed ID: 8783253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved fluorescent compounds for tracing cell lineage.
    Gimlich RL; Braun J
    Dev Biol; 1985 Jun; 109(2):509-14. PubMed ID: 2581834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of auditory neurons by retrograde labelling for patch-clamp recordings in a mixed culture of chick brainstem.
    Wirth MJ; Kuenzel T; Luksch H; Wagner H
    J Neurosci Methods; 2008 Mar; 169(1):55-64. PubMed ID: 18206245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium binding proteins.
    Sidibé M; Smith Y
    Neuroscience; 1999; 89(4):1189-208. PubMed ID: 10362307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of lipophilic dyes in studies of axonal pathfinding in vivo.
    Perrin FE; Stoeckli ET
    Microsc Res Tech; 2000 Jan; 48(1):25-31. PubMed ID: 10620782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dil and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing.
    Honig MG; Hume RI
    Trends Neurosci; 1989 Sep; 12(9):333-5, 340-1. PubMed ID: 2480673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired axonal transport and altered axolemmal permeability occur in distinct populations of damaged axons following traumatic brain injury.
    Stone JR; Okonkwo DO; Dialo AO; Rubin DG; Mutlu LK; Povlishock JT; Helm GA
    Exp Neurol; 2004 Nov; 190(1):59-69. PubMed ID: 15473980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, Fluoro-Ruby, within the CNS.
    Schmued L; Kyriakidis K; Heimer L
    Brain Res; 1990 Aug; 526(1):127-34. PubMed ID: 1706635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber pathways and positional changes in efferent perikarya of 2.5- to 7-day chick embryos as revealed with DiI and dextran amines.
    Fritzsch B; Christensen MA; Nichols DH
    J Neurobiol; 1993 Nov; 24(11):1481-99. PubMed ID: 7506749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.