BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24323766)

  • 1. Divergent palate morphology in turtles and birds correlates with differences in proliferation and BMP2 expression during embryonic development.
    Abramyan J; Leung KJ; Richman JM
    J Exp Zool B Mol Dev Evol; 2014 Feb; 322(2):73-85. PubMed ID: 24323766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity in primary palate ontogeny of amniotes revealed with 3D imaging.
    Abramyan J; Thivichon-Prince B; Richman JM
    J Anat; 2015 May; 226(5):420-33. PubMed ID: 25904546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent insights into the morphological diversity in the amniote primary and secondary palates.
    Abramyan J; Richman JM
    Dev Dyn; 2015 Dec; 244(12):1457-68. PubMed ID: 26293818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel insights into the development of the avian nasal cavity.
    Albawaneh Z; Ali R; Abramyan J
    Anat Rec (Hoboken); 2021 Feb; 304(2):247-257. PubMed ID: 31872940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarized Sonic Hedgehog Protein Localization and a Shift in the Expression of Region-Specific Molecules Is Associated With the Secondary Palate Development in the Veiled Chameleon.
    Hampl M; Dumkova J; Kavkova M; Dosedelova H; Bryjova A; Zahradnicek O; Pyszko M; Macholan M; Zikmund T; Kaiser J; Buchtova M
    Front Cell Dev Biol; 2020; 8():572. PubMed ID: 32850780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foxf2 is required for secondary palate development and Tgfβ signaling in palatal shelf mesenchyme.
    Nik AM; Johansson JA; Ghiami M; Reyahi A; Carlsson P
    Dev Biol; 2016 Jul; 415(1):14-23. PubMed ID: 27180663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tbx22 expressions during palatal development in fetuses with glucocorticoid-/alcohol-induced C57BL/6N cleft palates.
    Kim SM; Lee JH; Jabaiti S; Lee SK; Choi JY
    J Craniofac Surg; 2009 Sep; 20(5):1316-26. PubMed ID: 19816249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shox2 regulates osteogenic differentiation and pattern formation during hard palate development in mice.
    Xu J; Wang L; Li H; Yang T; Zhang Y; Hu T; Huang Z; Chen Y
    J Biol Chem; 2019 Nov; 294(48):18294-18305. PubMed ID: 31649032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development.
    Bush JO; Jiang R
    Development; 2012 Jan; 139(2):231-43. PubMed ID: 22186724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and requirement of T-box transcription factors Tbx2 and Tbx3 during secondary palate development in the mouse.
    Zirzow S; Lüdtke TH; Brons JF; Petry M; Christoffels VM; Kispert A
    Dev Biol; 2009 Dec; 336(2):145-55. PubMed ID: 19769959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation.
    Almaidhan A; Cesario J; Landin Malt A; Zhao Y; Sharma N; Choi V; Jeong J
    BMC Dev Biol; 2014 Jan; 14():3. PubMed ID: 24433583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular fingerprinting of TGFbeta-treated embryonic maxillary mesenchymal cells.
    Pisano MM; Mukhopadhyay P; Greene RM
    Orthod Craniofac Res; 2003 Nov; 6(4):194-209. PubMed ID: 14606523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palatal fusion - where do the midline cells go? A review on cleft palate, a major human birth defect.
    Dudas M; Li WY; Kim J; Yang A; Kaartinen V
    Acta Histochem; 2007; 109(1):1-14. PubMed ID: 16962647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesenchymal influences on epithelial differentiation in developing systems.
    Sharpe PM; Ferguson MW
    J Cell Sci Suppl; 1988; 10():195-230. PubMed ID: 3077937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A morphometric analysis of cell densities in facial prominences of the rhesus monkey embryo during primary palate formation.
    Diewert VM; Wang KY; Tait B
    J Craniofac Genet Dev Biol; 1993; 13(4):236-49. PubMed ID: 8288731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bmpr1a signaling plays critical roles in palatal shelf growth and palatal bone formation.
    Baek JA; Lan Y; Liu H; Maltby KM; Mishina Y; Jiang R
    Dev Biol; 2011 Feb; 350(2):520-31. PubMed ID: 21185278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle.
    Ohya YK; Kuraku S; Kuratani S
    J Exp Zool B Mol Dev Evol; 2005 Mar; 304(2):107-18. PubMed ID: 15643629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and Cellular Mechanisms of Palate Development.
    Li C; Lan Y; Jiang R
    J Dent Res; 2017 Oct; 96(11):1184-1191. PubMed ID: 28745929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signaling integration in the rugae growth zone directs sequential SHH signaling center formation during the rostral outgrowth of the palate.
    Welsh IC; O'Brien TP
    Dev Biol; 2009 Dec; 336(1):53-67. PubMed ID: 19782673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary palatal development in the chick.
    Will LA; Meller SM
    J Morphol; 1981 Aug; 169(2):185-90. PubMed ID: 7328665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.