These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 24323900)
1. Molecular pathways: targeting the microenvironment in chronic lymphocytic leukemia--focus on the B-cell receptor. ten Hacken E; Burger JA Clin Cancer Res; 2014 Feb; 20(3):548-56. PubMed ID: 24323900 [TBL] [Abstract][Full Text] [Related]
2. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: Implications for disease pathogenesis and treatment. Ten Hacken E; Burger JA Biochim Biophys Acta; 2016 Mar; 1863(3):401-413. PubMed ID: 26193078 [TBL] [Abstract][Full Text] [Related]
3. Microenvironment dependency in Chronic Lymphocytic Leukemia: The basis for new targeted therapies. ten Hacken E; Burger JA Pharmacol Ther; 2014 Dec; 144(3):338-48. PubMed ID: 25050922 [TBL] [Abstract][Full Text] [Related]
5. Expression of functional sphingosine-1 phosphate receptor-1 is reduced by B cell receptor signaling and increased by inhibition of PI3 kinase δ but not SYK or BTK in chronic lymphocytic leukemia cells. Till KJ; Pettitt AR; Slupsky JR J Immunol; 2015 Mar; 194(5):2439-46. PubMed ID: 25632006 [TBL] [Abstract][Full Text] [Related]
6. The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: insight into disease biology and new targeted therapies. Burger JA; Gribben JG Semin Cancer Biol; 2014 Feb; 24():71-81. PubMed ID: 24018164 [TBL] [Abstract][Full Text] [Related]
7. BCR signaling in chronic lymphocytic leukemia and related inhibitors currently in clinical studies. Robak T; Robak P Int Rev Immunol; 2013 Aug; 32(4):358-76. PubMed ID: 23617253 [TBL] [Abstract][Full Text] [Related]
8. B cell receptor signaling in chronic lymphocytic leukemia. Burger JA; Chiorazzi N Trends Immunol; 2013 Dec; 34(12):592-601. PubMed ID: 23928062 [TBL] [Abstract][Full Text] [Related]
9. Targeting the microenvironment in chronic lymphocytic leukemia is changing the therapeutic landscape. Burger JA Curr Opin Oncol; 2012 Nov; 24(6):643-9. PubMed ID: 22960555 [TBL] [Abstract][Full Text] [Related]
10. The role of B-cell receptor inhibitors in the treatment of patients with chronic lymphocytic leukemia. Wiestner A Haematologica; 2015 Dec; 100(12):1495-507. PubMed ID: 26628631 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of BCR signaling using the Syk inhibitor TAK-659 prevents stroma-mediated signaling in chronic lymphocytic leukemia cells. Purroy N; Carabia J; Abrisqueta P; Egia L; Aguiló M; Carpio C; Palacio C; Crespo M; Bosch F Oncotarget; 2017 Jan; 8(1):742-756. PubMed ID: 27888629 [TBL] [Abstract][Full Text] [Related]
12. The chronic lymphocytic leukemia microenvironment: Beyond the B-cell receptor. Choi MY; Kashyap MK; Kumar D Best Pract Res Clin Haematol; 2016 Mar; 29(1):40-53. PubMed ID: 27742071 [TBL] [Abstract][Full Text] [Related]
13. Nurture versus nature: the microenvironment in chronic lymphocytic leukemia. Burger JA Hematology Am Soc Hematol Educ Program; 2011; 2011():96-103. PubMed ID: 22160019 [TBL] [Abstract][Full Text] [Related]
14. Role of Bruton's tyrosine kinase in B cells and malignancies. Pal Singh S; Dammeijer F; Hendriks RW Mol Cancer; 2018 Feb; 17(1):57. PubMed ID: 29455639 [TBL] [Abstract][Full Text] [Related]
15. Spleen tyrosine kinase inhibition prevents chemokine- and integrin-mediated stromal protective effects in chronic lymphocytic leukemia. Buchner M; Baer C; Prinz G; Dierks C; Burger M; Zenz T; Stilgenbauer S; Jumaa H; Veelken H; Zirlik K Blood; 2010 Jun; 115(22):4497-506. PubMed ID: 20335218 [TBL] [Abstract][Full Text] [Related]
16. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Herishanu Y; Pérez-Galán P; Liu D; Biancotto A; Pittaluga S; Vire B; Gibellini F; Njuguna N; Lee E; Stennett L; Raghavachari N; Liu P; McCoy JP; Raffeld M; Stetler-Stevenson M; Yuan C; Sherry R; Arthur DC; Maric I; White T; Marti GE; Munson P; Wilson WH; Wiestner A Blood; 2011 Jan; 117(2):563-74. PubMed ID: 20940416 [TBL] [Abstract][Full Text] [Related]
17. Novel Spirocyclic Dimer, SpiD3, Targets Chronic Lymphocytic Leukemia Survival Pathways with Potent Preclinical Effects. Eiken AP; Smith AL; Skupa SA; Schmitz E; Rana S; Singh S; Kumar S; Mallareddy JR; de Cubas AA; Krishna A; Kalluchi A; Rowley MJ; D'Angelo CR; Lunning MA; Bociek RG; Vose JM; Natarajan A; El-Gamal D Cancer Res Commun; 2024 May; 4(5):1328-1343. PubMed ID: 38687198 [TBL] [Abstract][Full Text] [Related]
18. Functional Differences between IgM and IgD Signaling in Chronic Lymphocytic Leukemia. Ten Hacken E; Sivina M; Kim E; O'Brien S; Wierda WG; Ferrajoli A; Estrov Z; Keating MJ; Oellerich T; Scielzo C; Ghia P; Caligaris-Cappio F; Burger JA J Immunol; 2016 Sep; 197(6):2522-31. PubMed ID: 27534555 [TBL] [Abstract][Full Text] [Related]
19. BCR pathway inhibition as therapy for chronic lymphocytic leukemia and lymphoplasmacytic lymphoma. Wiestner A Hematology Am Soc Hematol Educ Program; 2014 Dec; 2014(1):125-34. PubMed ID: 25696845 [TBL] [Abstract][Full Text] [Related]
20. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Herman SE; Gordon AL; Hertlein E; Ramanunni A; Zhang X; Jaglowski S; Flynn J; Jones J; Blum KA; Buggy JJ; Hamdy A; Johnson AJ; Byrd JC Blood; 2011 Jun; 117(23):6287-96. PubMed ID: 21422473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]