These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 24324063)
1. Silicate fiber-based 3D cell culture system for anticancer drug screening. Yamaguchi Y; Deng D; Sato Y; Hou YT; Watanabe R; Sasaki K; Kawabe M; Hirano E; Morinaga T Anticancer Res; 2013 Dec; 33(12):5301-9. PubMed ID: 24324063 [TBL] [Abstract][Full Text] [Related]
2. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies. Godugu C; Patel AR; Desai U; Andey T; Sams A; Singh M PLoS One; 2013; 8(1):e53708. PubMed ID: 23349734 [TBL] [Abstract][Full Text] [Related]
3. Cytotoxic and molecular differences of anticancer agents on 2D and 3D cell culture. Alwahsh M; Al-Doridee A; Jasim S; Awwad O; Hergenröder R; Hamadneh L Mol Biol Rep; 2024 Jun; 51(1):721. PubMed ID: 38829450 [TBL] [Abstract][Full Text] [Related]
4. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance. Breslin S; O'Driscoll L Oncotarget; 2016 Jul; 7(29):45745-45756. PubMed ID: 27304190 [TBL] [Abstract][Full Text] [Related]
5. Activity of anticancer agents in a three-dimensional cell culture model. Nirmalanandhan VS; Duren A; Hendricks P; Vielhauer G; Sittampalam GS Assay Drug Dev Technol; 2010 Oct; 8(5):581-90. PubMed ID: 20662735 [TBL] [Abstract][Full Text] [Related]
6. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Imamura Y; Mukohara T; Shimono Y; Funakoshi Y; Chayahara N; Toyoda M; Kiyota N; Takao S; Kono S; Nakatsura T; Minami H Oncol Rep; 2015 Apr; 33(4):1837-43. PubMed ID: 25634491 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen. Dhiman HK; Ray AR; Panda AK Biomaterials; 2005 Mar; 26(9):979-86. PubMed ID: 15369686 [TBL] [Abstract][Full Text] [Related]
8. Target specific delivery of anticancer drug in silk fibroin based 3D distribution model of bone-breast cancer cells. Subia B; Dey T; Sharma S; Kundu SC ACS Appl Mater Interfaces; 2015 Feb; 7(4):2269-79. PubMed ID: 25557227 [TBL] [Abstract][Full Text] [Related]
9. Rituximab (chimeric anti-CD20 monoclonal antibody) inhibits the constitutive nuclear factor-{kappa}B signaling pathway in non-Hodgkin's lymphoma B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis. Jazirehi AR; Huerta-Yepez S; Cheng G; Bonavida B Cancer Res; 2005 Jan; 65(1):264-76. PubMed ID: 15665303 [TBL] [Abstract][Full Text] [Related]
10. 3-D tumor model for in vitro evaluation of anticancer drugs. Horning JL; Sahoo SK; Vijayaraghavalu S; Dimitrijevic S; Vasir JK; Jain TK; Panda AK; Labhasetwar V Mol Pharm; 2008; 5(5):849-62. PubMed ID: 18680382 [TBL] [Abstract][Full Text] [Related]
11. A comparative study of the effects of crab derived exosomes and doxorubicin in 2 & 3-dimensional in vivo models of breast cancer. Rezakhani L; Rahmati S; Ghasemi S; Alizadeh M; Alizadeh A Chem Phys Lipids; 2022 Mar; 243():105179. PubMed ID: 35150707 [TBL] [Abstract][Full Text] [Related]
12. Formation of multicellular tumor spheroids induced by cyclic RGD-peptides and use for anticancer drug testing in vitro. Akasov R; Zaytseva-Zotova D; Burov S; Leko M; Dontenwill M; Chiper M; Vandamme T; Markvicheva E Int J Pharm; 2016 Jun; 506(1-2):148-57. PubMed ID: 27107900 [TBL] [Abstract][Full Text] [Related]
13. Cyclooxygenase-2 induces genomic instability, BCL2 expression, doxorubicin resistance, and altered cancer-initiating cell phenotype in MCF7 breast cancer cells. Singh B; Cook KR; Vincent L; Hall CS; Berry JA; Multani AS; Lucci A J Surg Res; 2008 Jun; 147(2):240-6. PubMed ID: 18498876 [TBL] [Abstract][Full Text] [Related]
14. Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery. Agarwal P; Wang H; Sun M; Xu J; Zhao S; Liu Z; Gooch KJ; Zhao Y; Lu X; He X ACS Nano; 2017 Jul; 11(7):6691-6702. PubMed ID: 28614653 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of 3D calcium-alginate scaffolds for human glioblastoma modeling and anticancer drug response evaluation. Chaicharoenaudomrung N; Kunhorm P; Promjantuek W; Heebkaew N; Rujanapun N; Noisa P J Cell Physiol; 2019 Nov; 234(11):20085-20097. PubMed ID: 30945284 [TBL] [Abstract][Full Text] [Related]
16. Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing. Zhang X; Wang W; Yu W; Xie Y; Zhang X; Zhang Y; Ma X Biotechnol Prog; 2005; 21(4):1289-96. PubMed ID: 16080713 [TBL] [Abstract][Full Text] [Related]
17. The role of the 3D environment in hypoxia-induced drug and apoptosis resistance. Kim JW; Ho WJ; Wu BM Anticancer Res; 2011 Oct; 31(10):3237-45. PubMed ID: 21965731 [TBL] [Abstract][Full Text] [Related]
18. Translation of a tumor microenvironment mimicking 3D tumor growth co-culture assay platform to high-content screening. Krausz E; de Hoogt R; Gustin E; Cornelissen F; Grand-Perret T; Janssen L; Vloemans N; Wuyts D; Frans S; Axel A; Peeters PJ; Hall B; Cik M J Biomol Screen; 2013 Jan; 18(1):54-66. PubMed ID: 22923784 [TBL] [Abstract][Full Text] [Related]
19. A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening. Rijal G; Li W Sci Adv; 2017 Sep; 3(9):e1700764. PubMed ID: 28924608 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional cell culture models for anticancer drug screening: Worth the effort? Verjans ET; Doijen J; Luyten W; Landuyt B; Schoofs L J Cell Physiol; 2018 Apr; 233(4):2993-3003. PubMed ID: 28618001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]