BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 2432425)

  • 1. Defect in UV-induced unscheduled DNA synthesis in cultured epidermal keratinocytes from xeroderma pigmentosum.
    Kondo S; Satoh Y; Kuroki T
    Mutat Res; 1987 Jan; 183(1):95-101. PubMed ID: 2432425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defective DNA repair in cultured melanocytes from xeroderma pigmentosum patients.
    Yamaguchi J; Mamada A; Kondo S; Satoh Y
    J Dermatol; 1990 Aug; 17(8):465-72. PubMed ID: 2229649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced levels of UV-induced unscheduled DNA synthesis in epidermal keratinocytes of patients with xeroderma pigmentosum and correlation with development of skin neoplasms.
    Kondo S; Satoh Y; Kuroki T
    Cancer Res; 1989 Apr; 49(8):1927-30. PubMed ID: 2467739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of microinjected photoreactivating enzyme on thymine dimer removal and DNA repair synthesis in normal human and xeroderma pigmentosum fibroblasts.
    Roza L; Vermeulen W; Bergen Henegouwen JB; Eker AP; Jaspers NG; Lohman PH; Hoeijmakers JH
    Cancer Res; 1990 Mar; 50(6):1905-10. PubMed ID: 2306742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microinjection of Micrococcus luteus UV-endonuclease restores UV-induced unscheduled DNA synthesis in cells of 9 xeroderma pigmentosum complementation groups.
    de Jonge AJ; Vermeulen W; Keijzer W; Hoeijmakers JH; Bootsma D
    Mutat Res; 1985; 150(1-2):99-105. PubMed ID: 3839045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential behaviors toward ultraviolet A and B radiation of fibroblasts and keratinocytes from normal and DNA-repair-deficient patients.
    Otto AI; Riou L; Marionnet C; Mori T; Sarasin A; Magnaldo T
    Cancer Res; 1999 Mar; 59(6):1212-8. PubMed ID: 10096550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G.
    Zelle B; Lohman PH
    Mutat Res; 1979 Sep; 62(2):363-8. PubMed ID: 503100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assignment of three patients with xeroderma pigmentosum to complementation group E and their characteristics.
    Kondo S; Fukuro S; Mamada A; Kawada A; Satoh Y; Fujiwara Y
    J Invest Dermatol; 1988 Feb; 90(2):152-7. PubMed ID: 3339259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme.
    Zwetsloot JC; Hoeymakers JH; Vermeulen W; Eker AP; Bootsma D
    Mutat Res; 1986 Mar; 165(2):109-15. PubMed ID: 3951462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assignment of six patients with xeroderma pigmentosum in Hokkaido area to a variant form.
    Fujikawa K; Ayaki H; Ishizaki K; Takatera H; Matsuo S; Iizuka H; Koizumi H; Ikenaga M
    J Radiat Res; 1994 Sep; 35(3):168-78. PubMed ID: 7830260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xeroderma pigmentosum patients belonging to complementation group F and efficient liquid-holding recovery of ultraviolet damage.
    Nishigori C; Fujisawa H; Uyeno K; Kawaguchi T; Takebe H
    Photodermatol Photoimmunol Photomed; 1991 Aug; 8(4):146-50. PubMed ID: 1814424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interspecies complementation analysis of xeroderma pigmentosum and UV-sensitive Chinese hamster cells.
    Stefanini M; Keijzer W; Westerveld A; Bootsma D
    Exp Cell Res; 1985 Dec; 161(2):373-80. PubMed ID: 4065224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical and photobiological characteristics of Japanese xeroderma pigmentosum variant.
    Ichihashi M; Fujiwara Y
    Br J Dermatol; 1981 Jul; 105(1):1-12. PubMed ID: 7259973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatic mosaicism for DNA repair capacity in fibroblasts derived from a group A xeroderma pigmentosum patient.
    Chang HR; Ishizaki K; Sasaki MS; Toguchida J; Kato M; Nakamura Y; Kawamura S; Moriguchi T; Ikenaga M
    J Invest Dermatol; 1989 Oct; 93(4):460-5. PubMed ID: 2570806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cockayne syndrome complementation group B associated with xeroderma pigmentosum phenotype.
    Itoh T; Cleaver JE; Yamaizumi M
    Hum Genet; 1996 Feb; 97(2):176-9. PubMed ID: 8566949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium butyrate stimulates cellular recovery from UV damage in xeroderma pigmentosum cells belonging to complementation group F.
    Nishigori C; Takebe H
    Jpn J Cancer Res; 1987 Sep; 78(9):932-6. PubMed ID: 3117749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unscheduled DNA synthesis induced by 4-nitroquinoline-1-oxide in xeroderma pigmentosum cells and their complementing heterodikaryons.
    Tanaka K; Takebe H; Okada Y
    Somatic Cell Genet; 1980 Nov; 6(6):739-49. PubMed ID: 6777887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different sensitivities to ultraviolet light-induced cytotoxicity and sister chromatid exchanges in xeroderma pigmentosum and Bloom's syndrome fibroblasts.
    Mamada A; Kondo S; Satoh Y
    Photodermatol; 1989 Jun; 6(3):124-30. PubMed ID: 2762203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of 254 nm ultraviolet-induced (6-4) photoproducts: monoclonal antibody recognition and differential defects in xeroderma pigmentosum complementation groups A, D, and variant.
    Hiramoto T; Matsunaga T; Ichihashi M; Nikaido O; Fujiwara Y; Mishima Y
    J Invest Dermatol; 1989 Nov; 93(5):703-6. PubMed ID: 2794553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparisons of in vivo and in vitro photosensitivities and DNA repair in fibroblast and keratinocyte cells.
    Machino H; Shiraishi S; Miki Y
    Arch Dermatol Res; 1986; 279(2):125-9. PubMed ID: 3566336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.