These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24324448)

  • 1. Confidence-based progress-driven self-generated goals for skill acquisition in developmental robots.
    Ngo H; Luciw M; Förster A; Schmidhuber J
    Front Psychol; 2013; 4():833. PubMed ID: 24324448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning tactile skills through curious exploration.
    Pape L; Oddo CM; Controzzi M; Cipriani C; Förster A; Carrozza MC; Schmidhuber J
    Front Neurorobot; 2012; 6():6. PubMed ID: 22837748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Know Your Body Through Intrinsic Goals.
    Mannella F; Santucci VG; Somogyi E; Jacquey L; O'Regan KJ; Baldassarre G
    Front Neurorobot; 2018; 12():30. PubMed ID: 30018547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curiosity driven reinforcement learning for motion planning on humanoids.
    Frank M; Leitner J; Stollenga M; Förster A; Schmidhuber J
    Front Neurorobot; 2014 Jan; 7():25. PubMed ID: 24432001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incremental learning of skill collections based on intrinsic motivation.
    Metzen JH; Kirchner F
    Front Neurorobot; 2013; 7():11. PubMed ID: 23898265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning robotic manipulation skills with multiple semantic goals by conservative curiosity-motivated exploration.
    Han C; Peng Z; Liu Y; Tang J; Yu Y; Zhou Z
    Front Neurorobot; 2023; 17():1089270. PubMed ID: 36960195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boredom-Driven Curious Learning by Homeo-Heterostatic Value Gradients.
    Yu Y; Chang AYC; Kanai R
    Front Neurorobot; 2018; 12():88. PubMed ID: 30723402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organization of early vocal development in infants and machines: the role of intrinsic motivation.
    Moulin-Frier C; Nguyen SM; Oudeyer PY
    Front Psychol; 2013; 4():1006. PubMed ID: 24474941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of expected learning progress and perceptual novelty to curiosity-driven exploration.
    Poli F; Meyer M; Mars RB; Hunnius S
    Cognition; 2022 Aug; 225():105119. PubMed ID: 35421742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsically Motivated Exploration of Learned Goal Spaces.
    Laversanne-Finot A; Péré A; Oudeyer PY
    Front Neurorobot; 2020; 14():555271. PubMed ID: 33510630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies.
    Oudeyer PY; Gottlieb J; Lopes M
    Prog Brain Res; 2016; 229():257-284. PubMed ID: 27926442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsically motivated action-outcome learning and goal-based action recall: a system-level bio-constrained computational model.
    Baldassarre G; Mannella F; Fiore VG; Redgrave P; Gurney K; Mirolli M
    Neural Netw; 2013 May; 41():168-87. PubMed ID: 23098753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental perception of the self and action.
    Saegusa R; Metta G; Sandini G; Natale L
    IEEE Trans Neural Netw Learn Syst; 2014 Jan; 25(1):183-202. PubMed ID: 24806653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. End-to-End Autonomous Exploration with Deep Reinforcement Learning and Intrinsic Motivation.
    Ruan X; Li P; Zhu X; Yu H; Yu N
    Comput Intell Neurosci; 2021; 2021():9945044. PubMed ID: 34956359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task-Oriented Deep Reinforcement Learning for Robotic Skill Acquisition and Control.
    Xiang G; Su J
    IEEE Trans Cybern; 2021 Feb; 51(2):1056-1069. PubMed ID: 31725408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-stage training algorithm for AI robot soccer.
    Kim T; Vecchietti LF; Choi K; Sariel S; Har D
    PeerJ Comput Sci; 2021; 7():e718. PubMed ID: 34616894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments.
    Ramezani Dooraki A; Lee DJ
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30360397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intrinsic value system for developing multiple invariant representations with incremental slowness learning.
    Luciw M; Kompella V; Kazerounian S; Schmidhuber J
    Front Neurorobot; 2013; 7():9. PubMed ID: 23755011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.