BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24324472)

  • 1. The proteoglycan glycomatrix: a sugar microenvironment essential for complement regulation.
    Clark SJ; Bishop PN; Day AJ
    Front Immunol; 2013 Nov; 4():412. PubMed ID: 24324472
    [No Abstract]   [Full Text] [Related]  

  • 2. Biology of collagen-proteoglycan interaction.
    Junqueira LC; Montes GS
    Arch Histol Jpn; 1983 Dec; 46(5):589-629. PubMed ID: 6370189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans.
    Rapraeger A; Jalkanen M; Endo E; Koda J; Bernfield M
    J Biol Chem; 1985 Sep; 260(20):11046-52. PubMed ID: 3161889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemostatic properties and serum lipoprotein binding of a heparan sulfate proteoglycan from bovine aorta.
    Vijayagopal P; Srinivasan SR; Radhakrishnamurthy B; Berenson GS
    Biochim Biophys Acta; 1983 Jul; 758(1):70-83. PubMed ID: 6222769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glomerular proteoglycans in diabetes. Partial structural characterization and metabolism of de novo synthesized heparan-35SO4 and dermatan-35SO4 proteoglycans in streptozocin-induced diabetic rats.
    Klein DJ; Brown DM; Oegema TR
    Diabetes; 1986 Oct; 35(10):1130-42. PubMed ID: 2944782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of sulfated-proteoglycan synthesis by forskolin in monolayer cultures of rabbit articular chondrocytes.
    Malemud CJ; Mills TM; Shuckett R; Papay RS
    J Cell Physiol; 1986 Oct; 129(1):51-9. PubMed ID: 2428822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mouse mammary epithelial cells produce basement membrane and cell surface heparan sulfate proteoglycans containing distinct core proteins.
    Jalkanen M; Rapraeger A; Bernfield M
    J Cell Biol; 1988 Mar; 106(3):953-62. PubMed ID: 2964452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the proteoglycans produced by rabbit articular chondrocytes in monolayer and spinner culture and those of bovine nasal cartilage.
    Keiser HD; Malemud CJ
    Connect Tissue Res; 1983; 11(4):273-84. PubMed ID: 6227450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth plate regulation and osteochondroma formation: insights from tracing proteoglycans in zebrafish models and human cartilage.
    de Andrea CE; Prins FA; Wiweger MI; Hogendoorn PC
    J Pathol; 2011 Jun; 224(2):160-8. PubMed ID: 21506131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteoglycans and glycosaminoglycans induce gap junction synthesis and function in primary liver cultures.
    Spray DC; Fujita M; Saez JC; Choi H; Watanabe T; Hertzberg E; Rosenberg LC; Reid LM
    J Cell Biol; 1987 Jul; 105(1):541-51. PubMed ID: 2886511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondroitin sulfate proteoglycan synthesis and reutilization of beta-D-xyloside-initiated chondroitin/dermatan sulfate glycosaminoglycans in fetal kidney branching morphogenesis.
    Klein DJ; Brown DM; Moran A; Oegema TR; Platt JL
    Dev Biol; 1989 Jun; 133(2):515-28. PubMed ID: 2499495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucocorticoid Effects on Proteoglycans and Glycosaminoglycans.
    Strokotova AV; Grigorieva EV
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heparan sulfate proteoglycans in the substratum adhesion sites of human neuroblastoma cells: modulation of affinity binding to fibronectin.
    Vallen EA; Eldridge KA; Culp LA
    J Cell Physiol; 1988 May; 135(2):200-12. PubMed ID: 2967301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eosinophil cationic protein alters proteoglycan metabolism in human lung fibroblast cultures.
    Hernnäs J; Särnstrand B; Lindroth P; Peterson CG; Venge P; Malmström A
    Eur J Cell Biol; 1992 Dec; 59(2):352-63. PubMed ID: 1493801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping Proteoglycan Function Using Novel Genetic Strategies.
    Cortes M; Cortes LK; Schwartz NB
    Methods Mol Biol; 2022; 2303():731-752. PubMed ID: 34626419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abeta(1-40) prevents heparanase-catalyzed degradation of heparan sulfate glycosaminoglycans and proteoglycans in vitro. A role for heparan sulfate proteoglycan turnover in Alzheimer's disease.
    Bame KJ; Danda J; Hassall A; Tumova S
    J Biol Chem; 1997 Jul; 272(27):17005-11. PubMed ID: 9202014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteoglycans and proteoglycan mimetics for tissue engineering.
    Nguyen M; Panitch A
    Am J Physiol Cell Physiol; 2022 Apr; 322(4):C754-C761. PubMed ID: 35235426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics.
    Selleck SB
    Trends Genet; 2000 May; 16(5):206-12. PubMed ID: 10782114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial characterization of heparan and dermatan sulfate proteoglycans synthesized by normal rat glomeruli.
    Klein DJ; Brown DM; Oegema TR
    J Biol Chem; 1986 Dec; 261(35):16636-52. PubMed ID: 2946688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteoglycan synthesis by primary chick skeletal muscle during in vitro myogenesis.
    Miller RR; Rao JS; Festoff BW
    J Cell Physiol; 1987 Nov; 133(2):258-66. PubMed ID: 3680389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.