BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24324624)

  • 1. Molecular evolution of threonine dehydratase in bacteria.
    Yu X; Li Y; Wang X
    PLoS One; 2013; 8(12):e80750. PubMed ID: 24324624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of ACT-like subdomain in bacterial threonine dehydratases.
    Yu X; Li Y; Wang X
    PLoS One; 2014; 9(1):e87550. PubMed ID: 24475306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threonine dehydratases of Corynebacterium glutamicum with altered allosteric control: their generation and biochemical and structural analysis.
    Möckel B; Eggeling L; Sahm H
    Mol Microbiol; 1994 Sep; 13(5):833-42. PubMed ID: 7815942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical characterization of biodegradative threonine dehydratases from two enteric bacteria.
    Kim SS; Datta P
    Biochim Biophys Acta; 1982 Aug; 706(1):27-35. PubMed ID: 6751404
    [No Abstract]   [Full Text] [Related]  

  • 5. Allosteric regulation of Bacillus subtilis threonine deaminase, a biosynthetic threonine deaminase with a single regulatory domain.
    Shulman A; Zalyapin E; Vyazmensky M; Yifrach O; Barak Z; Chipman DM
    Biochemistry; 2008 Nov; 47(45):11783-92. PubMed ID: 18855421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and D-serine dehydratase.
    Parsot C
    EMBO J; 1986 Nov; 5(11):3013-9. PubMed ID: 3098560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the functional domains of biosynthetic threonine deaminase by comparison of the amino acid sequences of three wild-type alleles to the amino acid sequence of biodegradative threonine deaminase.
    Taillon BE; Little R; Lawther RP
    Gene; 1988 Mar; 63(2):245-52. PubMed ID: 3290055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of two isotypes of l-threonine dehydratase from Entamoeba histolytica.
    Husain A; Jeelani G; Sato D; Ali V; Nozaki T
    Mol Biochem Parasitol; 2010 Apr; 170(2):100-4. PubMed ID: 19931317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An expanded two-state model accounts for homotropic cooperativity in biosynthetic threonine deaminase from Escherichia coli.
    Eisenstein E; Yu HD; Fisher KE; Iacuzio DA; Ducote KR; Schwarz FP
    Biochemistry; 1995 Jul; 34(29):9403-12. PubMed ID: 7626610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ThrR, a DNA-binding transcription factor involved in controlling threonine biosynthesis in Bacillus subtilis.
    Rosenberg J; Müller P; Lentes S; Thiele MJ; Zeigler DR; Tödter D; Paulus H; Brantl S; Stülke J; Commichau FM
    Mol Microbiol; 2016 Sep; 101(5):879-93. PubMed ID: 27260660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-serine and L-threonine dehydratase from Clostridium propionicum. Two enzymes with different prosthetic groups.
    Hofmeister AE; Grabowski R; Linder D; Buckel W
    Eur J Biochem; 1993 Jul; 215(2):341-9. PubMed ID: 8344301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence and complementation analysis of recF genes from Escherichia coli, Salmonella typhimurium, Pseudomonas putida and Bacillus subtilis: evidence for an essential phosphate binding loop.
    Sandler SJ; Chackerian B; Li JT; Clark AJ
    Nucleic Acids Res; 1992 Feb; 20(4):839-45. PubMed ID: 1542576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production.
    Guillouet S; Rodal AA; An G; Lessard PA; Sinskey AJ
    Appl Environ Microbiol; 1999 Jul; 65(7):3100-7. PubMed ID: 10388709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serine and threonine catabolism in Saccharomyces cerevisiae: the CHA1 polypeptide is homologous with other serine and threonine dehydratases.
    Bornaes C; Petersen JG; Holmberg S
    Genetics; 1992 Jul; 131(3):531-9. PubMed ID: 1628804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human liver serine dehydratase. cDNA cloning and sequence homology with hydroxyamino acid dehydratases from other sources.
    Ogawa H; Gomi T; Konishi K; Date T; Nakashima H; Nose K; Matsuda Y; Peraino C; Pitot HC; Fujioka M
    J Biol Chem; 1989 Sep; 264(27):15818-23. PubMed ID: 2674117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of high- and low-affinity quinol-analogue-binding sites in the aa3 and bo3 terminal oxidases from Bacillus subtilis and Escherichia coli1.
    Bossis F; De Grassi A; Palese LL; Pierri CL
    Biochem J; 2014 Jul; 461(2):305-14. PubMed ID: 24779955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of a novel biochemical pathway for the biosynthesis of L-2-aminobutyric acid in Escherichia coli K12.
    Fotheringham IG; Grinter N; Pantaleone DP; Senkpeil RF; Taylor PP
    Bioorg Med Chem; 1999 Oct; 7(10):2209-13. PubMed ID: 10579528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional and structural analyses of threonine dehydratase from Corynebacterium glutamicum.
    Möckel B; Eggeling L; Sahm H
    J Bacteriol; 1992 Dec; 174(24):8065-72. PubMed ID: 1459955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Escherichia coli biodegradative threonine dehydratase by pyruvate.
    Park LS; Datta P
    J Bacteriol; 1979 Jun; 138(3):1026-8. PubMed ID: 378926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning of the hom-thrC-thrB cluster from Bacillus sp. ULM1: expression of the thrC gene in Escherichia coli and corynebacteria, and evolutionary relationships of the threonine genes.
    Malumbres M; Mateos LM; Guerrero C; Martín JF
    Folia Microbiol (Praha); 1995; 40(6):595-606. PubMed ID: 8768250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.