These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 24324634)
41. Moth pheromone binding proteins contribute to the excitation of olfactory receptor cells. Pophof B Naturwissenschaften; 2002 Nov; 89(11):515-8. PubMed ID: 12451455 [TBL] [Abstract][Full Text] [Related]
42. Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, noctuidae). Ulland S; Ian E; Mozuraitis R; Borg-Karlson AK; Meadow R; Mustaparta H Chem Senses; 2008 Jan; 33(1):35-46. PubMed ID: 17846100 [TBL] [Abstract][Full Text] [Related]
43. A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics. Vialatte FB; Martin C; Dubois R; Haddad J; Quenet B; Gervais R; Dreyfus G Neural Netw; 2007 Mar; 20(2):194-209. PubMed ID: 17145165 [TBL] [Abstract][Full Text] [Related]
44. Review of machine learning and signal processing techniques for automated electrode selection in high-density microelectrode arrays. Van Dijck G; Van Hulle MM Biomed Tech (Berl); 2014 Aug; 59(4):323-33. PubMed ID: 24231119 [TBL] [Abstract][Full Text] [Related]
45. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes. Takahashi S; Anzai Y; Sakurai Y J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049 [TBL] [Abstract][Full Text] [Related]
46. A computer aided diagnosis system for thyroid disease using extreme learning machine. Li LN; Ouyang JH; Chen HL; Liu DY J Med Syst; 2012 Oct; 36(5):3327-37. PubMed ID: 22327384 [TBL] [Abstract][Full Text] [Related]
47. Deep-learned spike representations and sorting via an ensemble of auto-encoders. Eom J; Park IY; Kim S; Jang H; Park S; Huh Y; Hwang D Neural Netw; 2021 Feb; 134():131-142. PubMed ID: 33307279 [TBL] [Abstract][Full Text] [Related]
48. An optimal strategy for prediction of sudden cardiac death through a pioneering feature-selection approach from HRV signal. Ebrahimzadeh E; Foroutan A; Shams M; Baradaran R; Rajabion L; Joulani M; Fayaz F Comput Methods Programs Biomed; 2019 Feb; 169():19-36. PubMed ID: 30638589 [TBL] [Abstract][Full Text] [Related]
49. Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. Ochieng SA; Park KC; Baker TC J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 May; 188(4):325-33. PubMed ID: 12012103 [TBL] [Abstract][Full Text] [Related]
50. A random forest classifier for lymph diseases. Azar AT; Elshazly HI; Hassanien AE; Elkorany AM Comput Methods Programs Biomed; 2014 Feb; 113(2):465-73. PubMed ID: 24290902 [TBL] [Abstract][Full Text] [Related]
51. Electrophysiological and behavioral phenotype of insulin receptor defective mice. Das P; Parsons AD; Scarborough J; Hoffman J; Wilson J; Thompson RN; Overton JM; Fadool DA Physiol Behav; 2005 Oct; 86(3):287-96. PubMed ID: 16176826 [TBL] [Abstract][Full Text] [Related]
52. Multimodal in vivo brain electrophysiology with integrated glass microelectrodes. Hunt DL; Lai C; Smith RD; Lee AK; Harris TD; Barbic M Nat Biomed Eng; 2019 Sep; 3(9):741-753. PubMed ID: 30936430 [TBL] [Abstract][Full Text] [Related]
53. Regularized logistic regression and multiobjective variable selection for classifying MEG data. Santana R; Bielza C; Larrañaga P Biol Cybern; 2012 Sep; 106(6-7):389-405. PubMed ID: 22854976 [TBL] [Abstract][Full Text] [Related]
54. Inheritance of olfactory preferences II. Olfactory receptor neuron responses from Heliothis subflexa x Heliothis virescens hybrid male moths. Baker TC; Quero C; Ochieng' SA; Vickers NJ Brain Behav Evol; 2006; 68(2):75-89. PubMed ID: 16707861 [TBL] [Abstract][Full Text] [Related]
55. Functional localization and visualization of the subthalamic nucleus from microelectrode recordings acquired during DBS surgery with unsupervised machine learning. Wong S; Baltuch GH; Jaggi JL; Danish SF J Neural Eng; 2009 Apr; 6(2):026006. PubMed ID: 19287077 [TBL] [Abstract][Full Text] [Related]
56. A comparative study on feature selection for a risk prediction model for colorectal cancer. Cueto-López N; García-Ordás MT; Dávila-Batista V; Moreno V; Aragonés N; Alaiz-Rodríguez R Comput Methods Programs Biomed; 2019 Aug; 177():219-229. PubMed ID: 31319951 [TBL] [Abstract][Full Text] [Related]
57. Multi-unit recording methods to characterize neural activity in the locust (Schistocerca americana) olfactory circuits. Saha D; Leong K; Katta N; Raman B J Vis Exp; 2013 Jan; (71):. PubMed ID: 23380828 [TBL] [Abstract][Full Text] [Related]
58. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes. Gómez-González JF; Destexhe A; Bal T J Neural Eng; 2014 Oct; 11(5):056028. PubMed ID: 25246226 [TBL] [Abstract][Full Text] [Related]
59. Deep Convolutional Neural Networks for Feature-Less Automatic Classification of Independent Components in Multi-Channel Electrophysiological Brain Recordings. Croce P; Zappasodi F; Marzetti L; Merla A; Pizzella V; Chiarelli AM IEEE Trans Biomed Eng; 2019 Aug; 66(8):2372-2380. PubMed ID: 30582523 [TBL] [Abstract][Full Text] [Related]
60. Identifying (Quasi) Equally Informative Subsets in Feature Selection Problems for Classification: A Max-Relevance Min-Redundancy Approach. Karakaya G; Galelli S; Ahipasaoglu SD; Taormina R IEEE Trans Cybern; 2016 Jun; 46(6):1424-37. PubMed ID: 26151949 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]