BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 24324825)

  • 1. Proteomics analysis of alfalfa response to heat stress.
    Li W; Wei Z; Qiao Z; Wu Z; Cheng L; Wang Y
    PLoS One; 2013; 8(12):e82725. PubMed ID: 24324825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt-stress induced proteomic changes of two contrasting alfalfa cultivars during germination stage.
    Gao Y; Cui Y; Long R; Sun Y; Zhang T; Yang Q; Kang J
    J Sci Food Agric; 2019 Feb; 99(3):1384-1396. PubMed ID: 30144052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening for salt-responsive proteins in two contrasting alfalfa cultivars using a comparative proteome approach.
    Rahman MA; Alam I; Kim YG; Ahn NY; Heo SH; Lee DG; Liu G; Lee BH
    Plant Physiol Biochem; 2015 Apr; 89():112-22. PubMed ID: 25743099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Transcriptome Combined with Proteome Analyses Revealed Key Factors Involved in Alfalfa (
    Zeng N; Yang Z; Zhang Z; Hu L; Chen L
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30889856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative proteomic analysis of Pinellia ternata leaves exposed to heat stress.
    Zhu Y; Zhu G; Guo Q; Zhu Z; Wang C; Liu Z
    Int J Mol Sci; 2013 Oct; 14(10):20614-34. PubMed ID: 24132150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A proteomic approach in analyzing heat-responsive proteins in rice leaves.
    Lee DG; Ahsan N; Lee SH; Kang KY; Bahk JD; Lee IJ; Lee BH
    Proteomics; 2007 Sep; 7(18):3369-83. PubMed ID: 17722143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iTRAQ-based comparative proteomic analysis of differences in the protein profiles of stems and leaves from two alfalfa genotypes.
    Sun H; Yu J; Zhang F; Kang J; Li M; Wang Z; Liu W; Zhang J; Yang Q; Long R
    BMC Plant Biol; 2020 Sep; 20(1):447. PubMed ID: 32993512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analyses provide new insights into the responses of Pinus massoniana seedlings to phosphorus deficiency.
    Fan F; Ding G; Wen X
    Proteomics; 2016 Feb; 16(3):504-15. PubMed ID: 26603831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics integrated with metabolomics: analysis of the internal causes of nutrient changes in alfalfa at different growth stages.
    Fan W; Ge G; Liu Y; Wang W; Liu L; Jia Y
    BMC Plant Biol; 2018 May; 18(1):78. PubMed ID: 29728056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the Proteome of
    Gutsch A; Zouaghi S; Renaut J; Cuypers A; Hausman JF; Sergeant K
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic Analysis of Vernalization Responsive Proteins in Winter Wheat Jing841.
    Feng Y; Kong B; Zhang J; Chen X; Yuan J; Tang X; Ma C
    Protein Pept Lett; 2018; 25(3):260-274. PubMed ID: 29345567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid.
    Yıldız M; Akçalı N; Terzi H
    J Plant Physiol; 2015 May; 179():90-9. PubMed ID: 25841209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of chromium stress and sulfur deficiency responses in leaves of two canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance.
    Yıldız M; Terzi H
    Ecotoxicol Environ Saf; 2016 Feb; 124():255-266. PubMed ID: 26546907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress.
    Wang L; Liu X; Liang M; Tan F; Liang W; Chen Y; Lin Y; Huang L; Xing J; Chen W
    PLoS One; 2014; 9(1):e83141. PubMed ID: 24416157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis reveals responsive mechanisms for saline-alkali stress in alfalfa.
    Ling L; An Y; Wang D; Tang L; Du B; Shu Y; Bai Y; Guo C
    Plant Physiol Biochem; 2022 Jan; 170():146-159. PubMed ID: 34891071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morpho-Physiological and Proteome Level Responses to Cadmium Stress in Sorghum.
    Roy SK; Cho SW; Kwon SJ; Kamal AH; Kim SW; Oh MW; Lee MS; Chung KY; Xin Z; Woo SH
    PLoS One; 2016; 11(2):e0150431. PubMed ID: 26919231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome responses of Gracilaria lemaneiformis exposed to lead stress.
    Du H; Liang H; Jiang Y; Qu X; Yan H; Liu X
    Mar Pollut Bull; 2018 Oct; 135():311-317. PubMed ID: 30301043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological, Ultrastructural and Proteomic Responses in the Leaf of Maize Seedlings to Polyethylene Glycol-Stimulated Severe Water Deficiency.
    Shao R; Xin L; Mao J; Li L; Kang G; Yang Q
    Int J Mol Sci; 2015 Sep; 16(9):21606-25. PubMed ID: 26370980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the leaf proteome of Miscanthus sinensis and its application to the identification of heat-responsive proteins.
    Sharmin SA; Alam I; Rahman MA; Kim KH; Kim YG; Lee BH
    Planta; 2013 Sep; 238(3):459-74. PubMed ID: 23728367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars.
    Tian X; Liu Y; Huang Z; Duan H; Tong J; He X; Gu W; Ma H; Xiao L
    Mol Biol Rep; 2015 Mar; 42(3):581-601. PubMed ID: 25359310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.