These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 24325273)
1. Novel nitrocellulose membrane substrate for efficient analysis of circulating tumor cells coupled with surface-enhanced Raman scattering imaging. Zhang P; Zhang R; Gao M; Zhang X ACS Appl Mater Interfaces; 2014 Jan; 6(1):370-6. PubMed ID: 24325273 [TBL] [Abstract][Full Text] [Related]
2. A rapid and simple method for efficient capture and accurate discrimination of circulating tumor cells using aptamer conjugated magnetic beads and surface-enhanced Raman scattering imaging. Sun C; Zhang R; Gao M; Zhang X Anal Bioanal Chem; 2015 Nov; 407(29):8883-92. PubMed ID: 26449846 [TBL] [Abstract][Full Text] [Related]
3. SERS biodetection using gold-silica nanoshells and nitrocellulose membranes. Bishnoi SW; Lin YJ; Tibudan M; Huang Y; Nakaema M; Swarup V; Keiderling TA Anal Chem; 2011 Jun; 83(11):4053-60. PubMed ID: 21504225 [TBL] [Abstract][Full Text] [Related]
4. Analytical technique for label-free multi-protein detection based on Western blot and surface-enhanced Raman scattering. Han XX; Jia HY; Wang YF; Lu ZC; Wang CX; Xu WQ; Zhao B; Ozaki Y Anal Chem; 2008 Apr; 80(8):2799-804. PubMed ID: 18290672 [TBL] [Abstract][Full Text] [Related]
5. Improved SERS Nanoparticles for Direct Detection of Circulating Tumor Cells in the Blood. Wu X; Luo L; Yang S; Ma X; Li Y; Dong C; Tian Y; Zhang L; Shen Z; Wu A ACS Appl Mater Interfaces; 2015 May; 7(18):9965-71. PubMed ID: 25875511 [TBL] [Abstract][Full Text] [Related]
6. Capture and detection of cancer cells in whole blood with magnetic-optical nanoovals. Bhana S; Chaffin E; Wang Y; Mishra SR; Huang X Nanomedicine (Lond); 2014 Apr; 9(5):593-606. PubMed ID: 23763633 [TBL] [Abstract][Full Text] [Related]
7. [A novel and facile microchip based on nitrocellulose membrane toward efficient capture of circulating tumor cells]. Zhang P; Sun C; Zhang R; Gao M; Zhang X Se Pu; 2013 Jun; 31(6):518-21. PubMed ID: 24063189 [TBL] [Abstract][Full Text] [Related]
8. SERS and fluorescence detection of circulating tumor cells (CTCs) with specific capture-release mode based on multifunctional gold nanomaterials and dual-selective recognition. Wang J; Zhang R; Ji X; Wang P; Ding C Anal Chim Acta; 2021 Jan; 1141():206-213. PubMed ID: 33248653 [TBL] [Abstract][Full Text] [Related]
9. Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells. He M; Lin J; Akakuru OU; Xu X; Li Y; Cao Y; Xu Y; Wu A Sci China Life Sci; 2022 Mar; 65(3):561-571. PubMed ID: 34258713 [TBL] [Abstract][Full Text] [Related]
10. A TiO Xu Y; Lin J; Wu X; Xu X; Zhang D; Xie Y; Pan T; He Y; Wu A; Shao G J Mater Chem B; 2022 May; 10(20):3808-3816. PubMed ID: 35475474 [TBL] [Abstract][Full Text] [Related]
11. Paper membrane-based SERS platform for the determination of glucose in blood samples. Torul H; Çiftçi H; Çetin D; Suludere Z; Boyacı IH; Tamer U Anal Bioanal Chem; 2015 Nov; 407(27):8243-51. PubMed ID: 26363778 [TBL] [Abstract][Full Text] [Related]
12. Selective Capture and Quick Detection of Targeting Cells with SERS-Coding Microsphere Suspension Chip. Li D; Zhang Y; Li R; Guo J; Wang C; Tang C Small; 2015 May; 11(18):2200-8. PubMed ID: 25597293 [TBL] [Abstract][Full Text] [Related]
13. Efficient detection of single circulating tumor cell in blood using Raman mapping based on Aptamer-SERS bio-probe coupled with micropore membrane filtration. Lv W; Fu B; Liu W; Huang W; Li M; Liu Y; Kang Y; Wang J; Bai S; Lu C; Dai X Talanta; 2024 Jan; 267():125220. PubMed ID: 37783108 [TBL] [Abstract][Full Text] [Related]
14. Nondestructive separation/enrichment and rolling circle amplification-powered sensitive SERS enumeration of circulating tumor cells via aptamer recognition. Li J; Dong C; Gan H; Gu X; Zhang J; Zhu Y; Xiong J; Song C; Wang L Biosens Bioelectron; 2023 Jul; 231():115273. PubMed ID: 37054599 [TBL] [Abstract][Full Text] [Related]
15. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates. Hu X; Meng G; Huang Q; Xu W; Han F; Sun K; Xu Q; Wang Z Nanotechnology; 2012 Sep; 23(38):385705. PubMed ID: 22948006 [TBL] [Abstract][Full Text] [Related]
16. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. Zheng S; Lin H; Liu JQ; Balic M; Datar R; Cote RJ; Tai YC J Chromatogr A; 2007 Aug; 1162(2):154-61. PubMed ID: 17561026 [TBL] [Abstract][Full Text] [Related]
17. Immunomagnetic Capture and Multiplexed Surface Marker Detection of Circulating Tumor Cells with Magnetic Multicolor Surface-Enhanced Raman Scattering Nanotags. Wilson RE; O'Connor R; Gallops CE; Kwizera EA; Noroozi B; Morshed BI; Wang Y; Huang X ACS Appl Mater Interfaces; 2020 Oct; 12(42):47220-47232. PubMed ID: 32966038 [TBL] [Abstract][Full Text] [Related]
18. Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry. MacLaughlin CM; Mullaithilaga N; Yang G; Ip SY; Wang C; Walker GC Langmuir; 2013 Feb; 29(6):1908-19. PubMed ID: 23360230 [TBL] [Abstract][Full Text] [Related]
19. Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate. Song C; Wang Z; Zhang R; Yang J; Tan X; Cui Y Biosens Bioelectron; 2009 Dec; 25(4):826-31. PubMed ID: 19765972 [TBL] [Abstract][Full Text] [Related]
20. Ultrasensitive telomerase activity detection by telomeric elongation controlled surface enhanced Raman scattering. Zong S; Wang Z; Chen H; Cui Y Small; 2013 Dec; 9(24):4215-20. PubMed ID: 23852668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]