These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 24325301)

  • 1. Fabrication of free-standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors.
    Xu D; Xu Q; Wang K; Chen J; Chen Z
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):200-9. PubMed ID: 24325301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of supercritical CO(2) on fabrication of free-standing hierarchical graphene oxide/carbon nanofiber/polypyrrole film and its electrochemical property.
    Xu S; Yang H; Wang K; Wang B; Xu Q
    Phys Chem Chem Phys; 2014 Apr; 16(16):7350-7. PubMed ID: 24623108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled fabrication of PANI/CNF hybrid films: molecular interaction induced various micromorphologies and electrochemical properties.
    Xu G; Xu D; Zhang J; Wang K; Chen Z; Chen J; Xu Q
    J Colloid Interface Sci; 2013 Dec; 411():204-12. PubMed ID: 24041549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Polyaniline/Graphene/Polyester Textile Electrode Materials for Flexible Supercapacitors with High Capacitance and Cycling Stability.
    Shao F; Bian SW; Zhu Q; Guo MX; Liu S; Peng YH
    Chem Asian J; 2016 Jul; 11(13):1906-12. PubMed ID: 27156174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.
    Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T
    Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrous RuO(2)-Carbon Nanofiber electrodes with high mass and electrode-specific capacitance for efficient energy storage.
    Vellacheri R; Pillai VK; Kurungot S
    Nanoscale; 2012 Feb; 4(3):890-6. PubMed ID: 22159715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of graphene oxide on the properties of its composite with polyaniline.
    Wang H; Hao Q; Yang X; Lu L; Wang X
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):821-8. PubMed ID: 20356287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocellulose supported hierarchical structured polyaniline/nanocarbon nanocomposite electrode
    Lyu S; Chen Y; Zhang L; Han S; Lu Y; Chen Y; Yang N; Chen Z; Wang S
    RSC Adv; 2019 Jun; 9(31):17824-17834. PubMed ID: 35520593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance asymmetric supercapacitor based on hierarchical nanocomposites of polyaniline nanoarrays on graphene oxide and its derived N-doped carbon nanoarrays grown on graphene sheets.
    Tabrizi AG; Arsalani N; Mohammadi A; Ghadimi LS; Ahadzadeh I
    J Colloid Interface Sci; 2018 Dec; 531():369-381. PubMed ID: 30041114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations on silver/polyaniline electrodes for electrochemical supercapacitors.
    Patil DS; Shaikh JS; Pawar SA; Devan RS; Ma YR; Moholkar AV; Kim JH; Kalubarme RS; Park CJ; Patil PS
    Phys Chem Chem Phys; 2012 Sep; 14(34):11886-95. PubMed ID: 22850931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors.
    Ates M; El-Kady M; Kaner RB
    Nanotechnology; 2018 Apr; 29(17):175402. PubMed ID: 29424710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films.
    Cho S; Shin KH; Jang J
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9186-93. PubMed ID: 24032539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique Core-Shell Nanorod Arrays with Polyaniline Deposited into Mesoporous NiCo2O4 Support for High-Performance Supercapacitor Electrodes.
    Jabeen N; Xia Q; Yang M; Xia H
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6093-100. PubMed ID: 26889785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor.
    Li Y; Zhao X; Yu P; Zhang Q
    Langmuir; 2013 Jan; 29(1):493-500. PubMed ID: 23205664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freestanding polyaniline nanorods grown on graphene for highly capacitive energy storage.
    Li Z; Qin Z; Yang B; Guo J; Wang H; Zhang W; Lv X; Stack A
    Nanotechnology; 2015 Feb; 26(6):065401. PubMed ID: 25611749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical core/shell structure of MnO2@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors.
    Yang M; Hong SB; Choi BG
    Phys Chem Chem Phys; 2015 Nov; 17(44):29874-9. PubMed ID: 26486195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor.
    Yan X; Tai Z; Chen J; Xue Q
    Nanoscale; 2011 Jan; 3(1):212-6. PubMed ID: 21060936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes.
    Shen J; Yang C; Li X; Wang G
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8467-76. PubMed ID: 23931572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Performance of Graphene Oxide/Polyaniline Composite for Supercapacitor Electrode.
    Li J; Xie H; Li Y
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3280-3. PubMed ID: 26353578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.