These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24325397)

  • 1. Drainage of a thin liquid film between hydrophobic spheres: boundary curvature effects.
    Fang A; Mi Y
    Langmuir; 2014 Jan; 30(1):83-9. PubMed ID: 24325397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drag force on a sphere moving toward an anisotropic superhydrophobic plane.
    Asmolov ES; Belyaev AV; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026330. PubMed ID: 21929113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling Hydrodynamic Boundary Conditions of Microstructured Surfaces in the Thin Channel Limit.
    Pilkington GA; Gupta R; Fréchette J
    Langmuir; 2016 Mar; 32(10):2360-8. PubMed ID: 26901492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D simulations of hydrodynamic drag forces on two porous spheres moving along their centerline.
    Wu RM; Lin MH; Lin HY; Hsu RY
    J Colloid Interface Sci; 2006 Sep; 301(1):227-35. PubMed ID: 16730016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Boundary Conditions at Hydrophobic Solid-Water Interfaces by Dynamic Film Drainage Measurement.
    Zhang X; Manica R; Tang Y; Tchoukov P; Liu Q; Xu Z
    Langmuir; 2018 Oct; 34(40):12025-12035. PubMed ID: 30173510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying hydrodynamic slip: a comprehensive analysis of dewetting profiles.
    Fetzer R; Münch A; Wagner B; Rauscher M; Jacobs K
    Langmuir; 2007 Oct; 23(21):10559-66. PubMed ID: 17803324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects.
    Bonaccurso E; Kappl M; Butt HJ
    Phys Rev Lett; 2002 Feb; 88(7):076103. PubMed ID: 11863917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliable measurements of interfacial slip by colloid probe atomic force microscopy. II. Hydrodynamic force measurements.
    Zhu L; Attard P; Neto C
    Langmuir; 2011 Jun; 27(11):6712-9. PubMed ID: 21542568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.
    Bhushan B; Wang Y; Maali A
    Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic interaction between spheres coated with deformable thin liquid films.
    Yang SM; Leal LG; Kim YS
    J Colloid Interface Sci; 2002 Jun; 250(2):457-65. PubMed ID: 16290685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of slip between a probe particle and a gel in microrheology.
    Fu HC; Shenoy VB; Powers TR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061503. PubMed ID: 19256842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translation and rotation of slightly deformed colloidal spheres experiencing slip.
    Chang YC; Keh HJ
    J Colloid Interface Sci; 2009 Feb; 330(1):201-10. PubMed ID: 19012900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Surfactants on the Film Drainage.
    Danov KD; Valkovska DS; Ivanov IB
    J Colloid Interface Sci; 1999 Mar; 211(2):291-303. PubMed ID: 10049545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retraction of "Drainage of a thin liquid film between hydrophobic spheres: boundary curvature effects".
    Fang A; Mi Y
    Langmuir; 2014 Sep; 30(36):10977. PubMed ID: 25184965
    [No Abstract]   [Full Text] [Related]  

  • 15. Measurement of no-slip and slip boundary conditions in confined Newtonian fluids using atomic force microscopy.
    Henry CL; Craig VS
    Phys Chem Chem Phys; 2009 Nov; 11(41):9514-21. PubMed ID: 19830336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective slip boundary conditions for flows over nanoscale chemical heterogeneities.
    Hendy SC; Lund NJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066313. PubMed ID: 18233923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of shear-dependent boundary slip in Newtonian liquids.
    Neto C; Craig VS; Williams DR
    Eur Phys J E Soft Matter; 2003 Nov; 12 Suppl 1():S71-4. PubMed ID: 15011020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanofluidics of thin polymer films: linking the slip boundary condition at solid-liquid interfaces to macroscopic pattern formation and microscopic interfacial properties.
    McGraw JD; Bäumchen O; Klos M; Haefner S; Lessel M; Backes S; Jacobs K
    Adv Colloid Interface Sci; 2014 Aug; 210():13-20. PubMed ID: 24780402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear-dependent boundary slip in an aqueous Newtonian liquid.
    Craig VS; Neto C; Williams DR
    Phys Rev Lett; 2001 Jul; 87(5):054504. PubMed ID: 11497777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.