BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24326072)

  • 41. Running up that hill: How to create cellular lipid gradients by lipid counter-flows.
    Moser von Filseck J; Drin G
    Biochimie; 2016 Nov; 130():115-121. PubMed ID: 27519300
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Subfamily III of mammalian oxysterol-binding protein (OSBP) homologues: the expression and intracellular localization of ORP3, ORP6, and ORP7.
    Lehto M; Tienari J; Lehtonen S; Lehtonen E; Olkkonen VM
    Cell Tissue Res; 2004 Jan; 315(1):39-57. PubMed ID: 14593528
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxysterol binding proteins: in more than one place at one time?
    Olkkonen VM; Levine TP
    Biochem Cell Biol; 2004 Feb; 82(1):87-98. PubMed ID: 15052330
    [TBL] [Abstract][Full Text] [Related]  

  • 44. OSBP-related proteins (ORPs) in human adipose depots and cultured adipocytes: evidence for impacts on the adipocyte phenotype.
    Zhou Y; Robciuc MR; Wabitsch M; Juuti A; Leivonen M; Ehnholm C; Yki-Järvinen H; Olkkonen VM
    PLoS One; 2012; 7(9):e45352. PubMed ID: 23028956
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular characterization of Osh6p, an oxysterol binding protein homolog in the yeast Saccharomyces cerevisiae.
    Wang P; Duan W; Munn AL; Yang H
    FEBS J; 2005 Sep; 272(18):4703-15. PubMed ID: 16156791
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Emerging roles of the oxysterol-binding protein family in metabolism, transport, and signaling.
    Fairn GD; McMaster CR
    Cell Mol Life Sci; 2008 Jan; 65(2):228-36. PubMed ID: 17938859
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Characterization of oxysterol binding protein homolog MgORP1 in the rice blast fungus Magnaporthe grisea].
    Chunhua L; Fucong Z
    Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1160-7. PubMed ID: 19062638
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative genome analysis of the neurexin gene family in Danio rerio: insights into their functions and evolution.
    Rissone A; Monopoli M; Beltrame M; Bussolino F; Cotelli F; Arese M
    Mol Biol Evol; 2007 Jan; 24(1):236-52. PubMed ID: 17041151
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential tissue-specific distribution of transcripts for the duplicated fatty acid-binding protein 10 (fabp10) genes in embryos, larvae and adult zebrafish (Danio rerio).
    Venkatachalam AB; Thisse C; Thisse B; Wright JM
    FEBS J; 2009 Nov; 276(22):6787-97. PubMed ID: 19843178
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lipid-dependent regulation of exocytosis in
    Smindak RJ; Heckle LA; Chittari SS; Hand MA; Hyatt DM; Mantus GE; Sanfelippo WA; Kozminski KG
    J Cell Sci; 2017 Nov; 130(22):3891-3906. PubMed ID: 28993464
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reconstitution of ORP-mediated lipid exchange coupled to PI4P metabolism.
    Fuggetta N; Rigolli N; Magdeleine M; Hamaï A; Seminara A; Drin G
    Proc Natl Acad Sci U S A; 2024 Mar; 121(10):e2315493121. PubMed ID: 38408242
    [TBL] [Abstract][Full Text] [Related]  

  • 52. pH Biosensing by PI4P Regulates Cargo Sorting at the TGN.
    Shin JJH; Liu P; Chan LJ; Ullah A; Pan J; Borchers CH; Burke JE; Stefan C; Smits GJ; Loewen CJR
    Dev Cell; 2020 Feb; 52(4):461-476.e4. PubMed ID: 31928972
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The fabp4 gene of zebrafish (Danio rerio)--genomic homology with the mammalian FABP4 and divergence from the zebrafish fabp3 in developmental expression.
    Liu RZ; Saxena V; Sharma MK; Thisse C; Thisse B; Denovan-Wright EM; Wright JM
    FEBS J; 2007 Mar; 274(6):1621-33. PubMed ID: 17480210
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New molecular mechanisms of inter-organelle lipid transport.
    Drin G; Moser von Filseck J; Čopič A
    Biochem Soc Trans; 2016 Apr; 44(2):486-92. PubMed ID: 27068959
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Monitoring Non-vesicular Transport of Phosphatidylserine and Phosphatidylinositol 4-Phosphate in Intact Cells by BRET Analysis.
    Sohn M; Toth DJ; Balla T
    Methods Mol Biol; 2019; 1949():13-22. PubMed ID: 30790245
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The diverse functions of oxysterol-binding proteins.
    Raychaudhuri S; Prinz WA
    Annu Rev Cell Dev Biol; 2010; 26():157-77. PubMed ID: 19575662
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ORP9 and ORP10 form a heterocomplex to transfer phosphatidylinositol 4-phosphate at ER-TGN contact sites.
    He R; Liu F; Wang H; Huang S; Xu K; Zhang C; Liu Y; Yu H
    Cell Mol Life Sci; 2023 Feb; 80(3):77. PubMed ID: 36853333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification and assessment of the role of a nominal phospholipid binding region of ORP1S (oxysterol-binding-protein-related protein 1 short) in the regulation of vesicular transport.
    Fairn GD; McMaster CR
    Biochem J; 2005 May; 387(Pt 3):889-96. PubMed ID: 15617515
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Family of human oxysterol binding protein (OSBP) homologues. A novel member implicated in brain sterol metabolism.
    Laitinen S; Olkkonen VM; Ehnholm C; Ikonen E
    J Lipid Res; 1999 Dec; 40(12):2204-11. PubMed ID: 10588946
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxysterol binding protein and its homologues: new regulatory factors involved in lipid metabolism.
    Olkkonen VM
    Curr Opin Lipidol; 2004 Jun; 15(3):321-7. PubMed ID: 15166789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.