These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24326245)

  • 1. Simulation of the planetary interior differentiation processes in the laboratory.
    Fei Y
    J Vis Exp; 2013 Nov; (81):. PubMed ID: 24326245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning experiments in the laser-heated diamond anvil cell: volatile content in the Earth's core.
    Jephcoat AP; Bouhifd MA; Porcelli D
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4295-314. PubMed ID: 18852112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core formation in planetesimals triggered by permeable flow.
    Yoshino T; Walter MJ; Katsura T
    Nature; 2003 Mar; 422(6928):154-7. PubMed ID: 12634783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melting phase relations in Fe-Si-H at high pressure and implications for Earth's inner core crystallization.
    Hikosaka K; Tagawa S; Hirose K; Okuda Y; Oka K; Umemoto K; Ohishi Y
    Sci Rep; 2022 Jun; 12(1):10000. PubMed ID: 35705617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Planetary science. Shock compression of stishovite and melting of silica at planetary interior conditions.
    Millot M; Dubrovinskaia N; Černok A; Blaha S; Dubrovinsky L; Braun DG; Celliers PM; Collins GW; Eggert JH; Jeanloz R
    Science; 2015 Jan; 347(6220):418-20. PubMed ID: 25613887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mars: a new core-crystallization regime.
    Stewart AJ; Schmidt MW; van Westrenen W; Liebske C
    Science; 2007 Jun; 316(5829):1323-5. PubMed ID: 17540900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shock compression response of forsterite above 250 GPa.
    Sekine T; Ozaki N; Miyanishi K; Asaumi Y; Kimura T; Albertazzi B; Sato Y; Sakawa Y; Sano T; Sugita S; Matsui T; Kodama R
    Sci Adv; 2016 Aug; 2(8):e1600157. PubMed ID: 27493993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfabrication of controlled-geometry samples for the laser-heated diamond-anvil cell using focused ion beam technology.
    Pigott JS; Reaman DM; Panero WR
    Rev Sci Instrum; 2011 Nov; 82(11):115106. PubMed ID: 22129012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperatures in Earth's Core Based on Melting and Phase Transformation Experiments on Iron.
    Saxena SK; Shen G; Lazor P
    Science; 1994 Apr; 264(5157):405-7. PubMed ID: 17836902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diamond Anvil Cell Partitioning Experiments for Accretion and Core Formation: Testing the Limitations of Electron Microprobe Analysis.
    Jennings ES; Wade J; Laurenz V; Petitgirard S
    Microsc Microanal; 2019 Feb; 25(1):1-10. PubMed ID: 30667352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction.
    Anzellini S; Dewaele A; Mezouar M; Loubeyre P; Morard G
    Science; 2013 Apr; 340(6131):464-6. PubMed ID: 23620049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A diamond-bearing core-mantle boundary on Mercury.
    Xu Y; Lin Y; Wu P; Namur O; Zhang Y; Charlier B
    Nat Commun; 2024 Jun; 15(1):5061. PubMed ID: 38877015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in situ approach to study trace element partitioning in the laser heated diamond anvil cell.
    Petitgirard S; Borchert M; Andrault D; Appel K; Mezouar M; Liermann HP
    Rev Sci Instrum; 2012 Jan; 83(1):013904. PubMed ID: 22299967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ab initio simulation of the Earth's core.
    Alfè D; Gillan MJ; Vocadlo L; Brodholt J; Price GD
    Philos Trans A Math Phys Eng Sci; 2002 Jun; 360(1795):1227-44. PubMed ID: 12804276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melting of iron at the physical conditions of the Earth's core.
    Nguyen JH; Holmes NC
    Nature; 2004 Jan; 427(6972):339-42. PubMed ID: 14737164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-silicate Partitioning at High Pressure and Temperature: Experimental Methods and a Protocol to Suppress Highly Siderophile Element Inclusions.
    Bennett NR; Brenan JM; Fei Y
    J Vis Exp; 2015 Jun; (100):e52725. PubMed ID: 26132380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa.
    Aquilanti G; Trapananti A; Karandikar A; Kantor I; Marini C; Mathon O; Pascarelli S; Boehler R
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12042-5. PubMed ID: 26371317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin crossover and iron-rich silicate melt in the Earth's deep mantle.
    Nomura R; Ozawa H; Tateno S; Hirose K; Hernlund J; Muto S; Ishii H; Hiraoka N
    Nature; 2011 May; 473(7346):199-202. PubMed ID: 21516105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique.
    Kimura T; Kuwayama Y; Yagi T
    J Chem Phys; 2014 Feb; 140(7):074501. PubMed ID: 24559351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization of silicon dioxide and compositional evolution of the Earth's core.
    Hirose K; Morard G; Sinmyo R; Umemoto K; Hernlund J; Helffrich G; Labrosse S
    Nature; 2017 Mar; 543(7643):99-102. PubMed ID: 28225759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.