BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24326256)

  • 41. Retinoic acid signaling is essential for maintenance of the blood-retinal barrier.
    Pollock LM; Xie J; Bell BA; Anand-Apte B
    FASEB J; 2018 Oct; 32(10):5674-5684. PubMed ID: 29874129
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The cKit Inhibitor, Masitinib, Prevents Diabetes-Induced Retinal Vascular Leakage.
    Kim SR; Im JE; Jeong JH; Kim JY; Kim JT; Woo SJ; Sung JH; Park SG; Suh W
    Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):1201-6. PubMed ID: 26978025
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Loss of caveolin-1 impairs retinal function due to disturbance of subretinal microenvironment.
    Li X; McClellan ME; Tanito M; Garteiser P; Towner R; Bissig D; Berkowitz BA; Fliesler SJ; Woodruff ML; Fain GL; Birch DG; Khan MS; Ash JD; Elliott MH
    J Biol Chem; 2012 May; 287(20):16424-34. PubMed ID: 22451674
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stimulation of Caveolin-1 Signaling Improves Arteriovenous Fistula Patency.
    Hashimoto T; Isaji T; Hu H; Yamamoto K; Bai H; Santana JM; Kuo A; Kuwahara G; Foster TR; Hanisch JJ; Yatsula BA; Sessa WC; Hoshina K; Dardik A
    Arterioscler Thromb Vasc Biol; 2019 Apr; 39(4):754-764. PubMed ID: 30786746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gradual Suppression of Transcytosis Governs Functional Blood-Retinal Barrier Formation.
    Chow BW; Gu C
    Neuron; 2017 Mar; 93(6):1325-1333.e3. PubMed ID: 28334606
    [TBL] [Abstract][Full Text] [Related]  

  • 46. HIV-1 gp120 Glycoprotein Interacting with Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Down-Regulates Tight Junction Proteins to Disrupt the Blood Retinal Barrier and Increase Its Permeability.
    Qian YW; Li C; Jiang AP; Ge S; Gu P; Fan X; Li TS; Jin X; Wang JH; Wang ZL
    J Biol Chem; 2016 Oct; 291(44):22977-22987. PubMed ID: 27605665
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vascular permeability and pathological angiogenesis in caveolin-1-null mice.
    Chang SH; Feng D; Nagy JA; Sciuto TE; Dvorak AM; Dvorak HF
    Am J Pathol; 2009 Oct; 175(4):1768-76. PubMed ID: 19729487
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury.
    Gu Y; Zheng G; Xu M; Li Y; Chen X; Zhu W; Tong Y; Chung SK; Liu KJ; Shen J
    J Neurochem; 2012 Jan; 120(1):147-56. PubMed ID: 22007835
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative assessment of the integrity of the blood-retinal barrier in mice.
    Derevjanik NL; Vinores SA; Xiao WH; Mori K; Turon T; Hudish T; Dong S; Campochiaro PA
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2462-7. PubMed ID: 12091451
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dll4 Suppresses Transcytosis for Arterial Blood-Retinal Barrier Homeostasis.
    Yang JM; Park CS; Kim SH; Noh TW; Kim JH; Park S; Lee J; Park JR; Yoo D; Jung HH; Takase H; Shima DT; Schwaninger M; Lee S; Kim IK; Lee J; Ji YS; Jon S; Oh WY; Kim P; Uemura A; Ju YS; Kim I
    Circ Res; 2020 Mar; 126(6):767-783. PubMed ID: 32078435
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scutellarin alleviates blood-retina-barrier oxidative stress injury initiated by activated microglia cells during the development of diabetic retinopathy.
    Mei X; Zhang T; Ouyang H; Lu B; Wang Z; Ji L
    Biochem Pharmacol; 2019 Jan; 159():82-95. PubMed ID: 30447218
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protective effect of clusterin on blood-retinal barrier breakdown in diabetic retinopathy.
    Kim JH; Kim JH; Yu YS; Min BH; Kim KW
    Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1659-65. PubMed ID: 19875648
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of azurocidin as a permeability factor in the retina: involvement in VEGF-induced and early diabetic blood-retinal barrier breakdown.
    Skondra D; Noda K; Almulki L; Tayyari F; Frimmel S; Nakazawa T; Kim IK; Zandi S; Thomas KL; Miller JW; Gragoudas ES; Hafezi-Moghadam A
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):726-31. PubMed ID: 18235021
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice.
    Bernatchez P; Sharma A; Bauer PM; Marin E; Sessa WC
    J Clin Invest; 2011 Sep; 121(9):3747-55. PubMed ID: 21804187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Caveolin-2-deficient mice show increased sensitivity to endotoxemia.
    de Almeida CJ; Witkiewicz AK; Jasmin JF; Tanowitz HB; Sotgia F; Frank PG; Lisanti MP
    Cell Cycle; 2011 Jul; 10(13):2151-61. PubMed ID: 21670588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ursodeoxycholic acid ameliorates diabetic retinopathy via reducing retinal inflammation and reversing the breakdown of blood-retinal barrier.
    Ouyang H; Mei X; Zhang T; Lu B; Ji L
    Eur J Pharmacol; 2018 Dec; 840():20-27. PubMed ID: 30268667
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electron microscopic immunocytochemical evidence for the mechanism of blood-retinal barrier breakdown in galactosemic rats and its association with aldose reductase expression and inhibition.
    Vinores SA; Van Niel E; Swerdloff JL; Campochiaro PA
    Exp Eye Res; 1993 Dec; 57(6):723-35. PubMed ID: 8150024
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Caveolin expression changes in the neurovascular unit after juvenile traumatic brain injury: signs of blood-brain barrier healing?
    Badaut J; Ajao DO; Sorensen DW; Fukuda AM; Pellerin L
    Neuroscience; 2015 Jan; 285():215-26. PubMed ID: 25450954
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cooperative Role of Mineralocorticoid Receptor and Caveolin-1 in Regulating the Vascular Response to Low Nitric Oxide-High Angiotensin II-Induced Cardiovascular Injury.
    Pojoga LH; Yao TM; Opsasnick LA; Siddiqui WT; Reslan OM; Adler GK; Williams GH; Khalil RA
    J Pharmacol Exp Ther; 2015 Oct; 355(1):32-47. PubMed ID: 26183312
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A New Human Blood-Retinal Barrier Model Based on Endothelial Cells, Pericytes, and Astrocytes.
    Fresta CG; Fidilio A; Caruso G; Caraci F; Giblin FJ; Leggio GM; Salomone S; Drago F; Bucolo C
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32121029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.