BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24326256)

  • 61. Vascular effects of linagliptin in non-obese diabetic mice are glucose-independent and involve positive modulation of the endothelial nitric oxide synthase (eNOS)/caveolin-1 (CAV-1) pathway.
    Vellecco V; Mitidieri E; Gargiulo A; Brancaleone V; Matassa D; Klein T; Esposito F; Cirino G; Bucci M
    Diabetes Obes Metab; 2016 Dec; 18(12):1236-1243. PubMed ID: 27460695
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ultrastructural localization of blood-retinal barrier breakdown in diabetic and galactosemic rats.
    Vinores SA; McGehee R; Lee A; Gadegbeku C; Campochiaro PA
    J Histochem Cytochem; 1990 Sep; 38(9):1341-52. PubMed ID: 2117624
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Occipital blood-brain barrier permeability is an independent predictor of visual outcome in type 2 diabetes, irrespective of the retinal barrier: A longitudinal study.
    Abuhaiba SI; Cordeiro M; Amorim A; Cruz Â; Quendera B; Ferreira C; Ribeiro L; Bernardes R; Castelo-Branco M
    J Neuroendocrinol; 2018 Jan; 30(1):. PubMed ID: 29247551
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Leukocyte trafficking in experimental autoimmune uveitis: breakdown of blood-retinal barrier and upregulation of cellular adhesion molecules.
    Xu H; Forrester JV; Liversidge J; Crane IJ
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):226-34. PubMed ID: 12506079
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Chlorogenic acid decreases retinal vascular hyperpermeability in diabetic rat model.
    Shin JY; Sohn J; Park KH
    J Korean Med Sci; 2013 Apr; 28(4):608-13. PubMed ID: 23579598
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Caveolin-1 ablation reduces the adverse cardiovascular effects of N-omega-nitro-L-arginine methyl ester and angiotensin II.
    Pojoga LH; Romero JR; Yao TM; Loutraris P; Ricchiuti V; Coutinho P; Guo C; Lapointe N; Stone JR; Adler GK; Williams GH
    Endocrinology; 2010 Mar; 151(3):1236-46. PubMed ID: 20097717
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Beneficial effects of the Src inhibitor, dasatinib, on breakdown of the blood-retinal barrier.
    Kim SR; Suh W
    Arch Pharm Res; 2017 Feb; 40(2):197-203. PubMed ID: 27988882
    [TBL] [Abstract][Full Text] [Related]  

  • 68. TNFSF15 Inhibits Blood Retinal Barrier Breakdown Induced by Diabetes.
    Jiang F; Chen Q; Huang L; Wang Y; Zhang Z; Meng X; Liu Y; Mao C; Zheng F; Zhang J; Yan H
    Int J Mol Sci; 2016 Apr; 17(5):. PubMed ID: 27120595
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters.
    Segal SS; Brett SE; Sessa WC
    Am J Physiol; 1999 Sep; 277(3):H1167-77. PubMed ID: 10484439
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Diabetic eNOS-knockout mice develop accelerated retinopathy.
    Li Q; Verma A; Han PY; Nakagawa T; Johnson RJ; Grant MB; Campbell-Thompson M; Jarajapu YP; Lei B; Hauswirth WW
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5240-6. PubMed ID: 20435587
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Using Adeno-associated Virus as a Tool to Study Retinal Barriers in Disease.
    Vacca O; El Mathari B; Darche M; Sahel JA; Rendon A; Dalkara D
    J Vis Exp; 2015 Apr; (98):. PubMed ID: 25938717
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Regulation of Caveolin-1 Expression Determines Early Brain Edema After Experimental Focal Cerebral Ischemia.
    Choi KH; Kim HS; Park MS; Kim JT; Kim JH; Cho KA; Lee MC; Lee HJ; Cho KH
    Stroke; 2016 May; 47(5):1336-43. PubMed ID: 27012742
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The blood-retinal barrier in experimental autoimmune uveoretinitis. Leukocyte interactions and functional damage.
    Greenwood J; Howes R; Lightman S
    Lab Invest; 1994 Jan; 70(1):39-52. PubMed ID: 8302017
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The blood-retinal barriers.
    Cunha-Vaz JG
    Doc Ophthalmol; 1976 Oct; 41(2):287-327. PubMed ID: 1009819
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Neutrophil elastase contributes to the pathological vascular permeability characteristic of diabetic retinopathy.
    Liu H; Lessieur EM; Saadane A; Lindstrom SI; Taylor PR; Kern TS
    Diabetologia; 2019 Dec; 62(12):2365-2374. PubMed ID: 31612267
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth.
    Lin MI; Yu J; Murata T; Sessa WC
    Cancer Res; 2007 Mar; 67(6):2849-56. PubMed ID: 17363608
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Methylglyoxal induces hyperpermeability of the blood-retinal barrier via the loss of tight junction proteins and the activation of matrix metalloproteinases.
    Kim J; Kim CS; Lee YM; Jo K; Shin SD; Kim JS
    Graefes Arch Clin Exp Ophthalmol; 2012 May; 250(5):691-7. PubMed ID: 22249316
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Extract of Litsea japonica ameliorates blood-retinal barrier breakdown in db/db mice.
    Kim J; Kim CS; Lee IS; Lee YM; Sohn E; Jo K; Kim JH; Kim JS
    Endocrine; 2014 Aug; 46(3):462-9. PubMed ID: 24287793
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nitric oxide synthase activity in retinas from non-insulin-dependent diabetic Goto-Kakizaki rats: correlation with blood-retinal barrier permeability.
    Carmo A; Cunha-Vaz JG; Carvalho AP; Lopes MC
    Nitric Oxide; 2000 Dec; 4(6):590-6. PubMed ID: 11139367
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Caveolin-1 deficiency increases cerebral ischemic injury.
    Jasmin JF; Malhotra S; Singh Dhallu M; Mercier I; Rosenbaum DM; Lisanti MP
    Circ Res; 2007 Mar; 100(5):721-9. PubMed ID: 17293479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.