These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24326292)

  • 1. Cross-validation in association mapping and its relevance for the estimation of QTL parameters of complex traits.
    Würschum T; Kraft T
    Heredity (Edinb); 2014 Apr; 112(4):463-8. PubMed ID: 24326292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of multi-locus models for genome-wide association studies: a case study in sugar beet.
    Würschum T; Kraft T
    Heredity (Edinb); 2015 Mar; 114(3):281-90. PubMed ID: 25351864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide association mapping of agronomic traits in sugar beet.
    Würschum T; Maurer HP; Kraft T; Janssen G; Nilsson C; Reif JC
    Theor Appl Genet; 2011 Nov; 123(7):1121-31. PubMed ID: 21761161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits.
    Schön CC; Utz HF; Groh S; Truberg B; Openshaw S; Melchinger AE
    Genetics; 2004 May; 167(1):485-98. PubMed ID: 15166171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet.
    Würschum T; Maurer HP; Schulz B; Möhring J; Reif JC
    Theor Appl Genet; 2011 Jun; 123(1):109-18. PubMed ID: 21448808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association mapping in multiple segregating populations of sugar beet (Beta vulgaris L.).
    Stich B; Melchinger AE; Heckenberger M; Möhring J; Schechert A; Piepho HP
    Theor Appl Genet; 2008 Nov; 117(7):1167-79. PubMed ID: 18719879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision-mapping and statistical validation of quantitative trait loci by machine learning.
    Bedo J; Wenzl P; Kowalczyk A; Kilian A
    BMC Genet; 2008 May; 9():35. PubMed ID: 18452626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bias and Sampling Error of the Estimated Proportion of Genotypic Variance Explained by Quantitative Trait Loci Determined From Experimental Data in Maize Using Cross Validation and Validation With Independent Samples.
    Utz HF; Melchinger AE; Schön CC
    Genetics; 2000 Apr; 154(3):1839-1849. PubMed ID: 10866652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multiparent Advanced Generation Inter-Cross to fine-map quantitative traits in Arabidopsis thaliana.
    Kover PX; Valdar W; Trakalo J; Scarcelli N; Ehrenreich IM; Purugganan MD; Durrant C; Mott R
    PLoS Genet; 2009 Jul; 5(7):e1000551. PubMed ID: 19593375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-density genotyping: an overkill for QTL mapping? Lessons learned from a case study in maize and simulations.
    Stange M; Utz HF; Schrag TA; Melchinger AE; Würschum T
    Theor Appl Genet; 2013 Oct; 126(10):2563-74. PubMed ID: 23860723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic basis of agronomically important traits in sugar beet (Beta vulgaris L.) investigated with joint linkage association mapping.
    Reif JC; Liu W; Gowda M; Maurer HP; Möhring J; Fischer S; Schechert A; Würschum T
    Theor Appl Genet; 2010 Nov; 121(8):1489-99. PubMed ID: 20640844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple trait multiple interval mapping of quantitative trait loci from inbred line crosses.
    Da Costa E Silva L; Wang S; Zeng ZB
    BMC Genet; 2012 Aug; 13():67. PubMed ID: 22852865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian mapping of quantitative trait loci for multiple complex traits with the use of variance components.
    Liu J; Liu Y; Liu X; Deng HW
    Am J Hum Genet; 2007 Aug; 81(2):304-20. PubMed ID: 17668380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of QTL allelic diversity on QTL detection in multi-parent populations: a simulation study in sugar beet.
    Garin V; Wimmer V; Borchardt D; Malosetti M; van Eeuwijk F
    BMC Genom Data; 2021 Feb; 22(1):4. PubMed ID: 33568071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and Arabidopsis.
    Stich B; Melchinger AE
    BMC Genomics; 2009 Feb; 10():94. PubMed ID: 19250529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble Learning of QTL Models Improves Prediction of Complex Traits.
    Bian Y; Holland JB
    G3 (Bethesda); 2015 Aug; 5(10):2073-84. PubMed ID: 26276383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QTL mapping of stalk bending strength in a recombinant inbred line maize population.
    Hu H; Liu W; Fu Z; Homann L; Technow F; Wang H; Song C; Li S; Melchinger AE; Chen S
    Theor Appl Genet; 2013 Sep; 126(9):2257-66. PubMed ID: 23737073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint analysis of two breed cross populations in pigs to improve detection and characterization of quantitative trait loci.
    Kim JJ; Rothschild MF; Beever J; Rodriguez-Zas S; Dekkers JC
    J Anim Sci; 2005 Jun; 83(6):1229-40. PubMed ID: 15890800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlations and comparisons of quantitative trait loci with family per se and testcross performance for grain yield and related traits in maize.
    Peng B; Li Y; Wang Y; Liu C; Liu Z; Zhang Y; Tan W; Wang D; Shi Y; Sun B; Song Y; Wang T; Li Y
    Theor Appl Genet; 2013 Mar; 126(3):773-89. PubMed ID: 23183923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross.
    Blair MW; Iriarte G; Beebe S
    Theor Appl Genet; 2006 Apr; 112(6):1149-63. PubMed ID: 16432734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.