These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 24326389)

  • 1. Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices.
    Ivanov AI; Malkov AE; Waseem T; Mukhtarov M; Buldakova S; Gubkina O; Zilberter M; Zilberter Y
    J Cereb Blood Flow Metab; 2014 Mar; 34(3):397-407. PubMed ID: 24326389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate uptake contributes to the NAD(P)H biphasic response and tissue oxygen response during synaptic stimulation in area CA1 of rat hippocampal slices.
    Galeffi F; Foster KA; Sadgrove MP; Beaver CJ; Turner DA
    J Neurochem; 2007 Dec; 103(6):2449-61. PubMed ID: 17931363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of glucose and lactate as substrates during NMDA-induced activation of hippocampal slices.
    Chih CP; He J; Sly TS; Roberts EL
    Brain Res; 2001 Mar; 893(1-2):143-54. PubMed ID: 11223002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during sustained checkerboard stimulation in vivo.
    Gjedde A; Marrett S
    J Cereb Blood Flow Metab; 2001 Dec; 21(12):1384-92. PubMed ID: 11740199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal Stimulation Triggers Neuronal Glycolysis and Not Lactate Uptake.
    Díaz-García CM; Mongeon R; Lahmann C; Koveal D; Zucker H; Yellen G
    Cell Metab; 2017 Aug; 26(2):361-374.e4. PubMed ID: 28768175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative and nonoxidative metabolism of excited neurons and astrocytes.
    Gjedde A; Marrett S; Vafaee M
    J Cereb Blood Flow Metab; 2002 Jan; 22(1):1-14. PubMed ID: 11807388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astrocytic aerobic glycolysis provides lactate to support neuronal oxidative metabolism in the hippocampus.
    Dias C; Fernandes E; Barbosa RM; Laranjinha J; Ledo A
    Biofactors; 2023; 49(4):875-886. PubMed ID: 37070143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing.
    Hall CN; Klein-Flügge MC; Howarth C; Attwell D
    J Neurosci; 2012 Jun; 32(26):8940-51. PubMed ID: 22745494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging.
    Magistretti PJ; Pellerin L
    Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1155-63. PubMed ID: 10466143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism.
    Yellen G
    J Cell Biol; 2018 Jul; 217(7):2235-2246. PubMed ID: 29752396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis.
    Kasischke KA; Vishwasrao HD; Fisher PJ; Zipfel WR; Webb WW
    Science; 2004 Jul; 305(5680):99-103. PubMed ID: 15232110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurons rely on glucose rather than astrocytic lactate during stimulation.
    Díaz-García CM; Yellen G
    J Neurosci Res; 2019 Aug; 97(8):883-889. PubMed ID: 30575090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of lactate on the synaptic potential, energy metabolism, calcium homeostasis and extracellular glutamate concentration in the dentate gyrus of the hippocampus from guinea-pig.
    Takata T; Sakurai T; Yang B; Yokono K; Okada Y
    Neuroscience; 2001; 104(2):371-8. PubMed ID: 11377841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations.
    Kann O
    J Neurochem; 2024 May; 168(5):608-631. PubMed ID: 37309602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices.
    Shuttleworth CW; Brennan AM; Connor JA
    J Neurosci; 2003 Apr; 23(8):3196-208. PubMed ID: 12716927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic glycolysis is crucial for the maintenance of neural activity in guinea pig hippocampal slices.
    Yamane K; Yokono K; Okada Y
    J Neurosci Methods; 2000 Nov; 103(2):163-71. PubMed ID: 11084209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycolysis regulates the induction of lactate utilization for synaptic potentials after hypoxia in the granule cell of guinea pig hippocampus.
    Takata T; Yang B; Sakurai T; Okada Y; Yokono K
    Neurosci Res; 2004 Dec; 50(4):467-74. PubMed ID: 15567484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential Presynaptic ATP Supply for Basal and High-Demand Transmission.
    Sobieski C; Fitzpatrick MJ; Mennerick SJ
    J Neurosci; 2017 Feb; 37(7):1888-1899. PubMed ID: 28093477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain.
    Dienel GA
    J Neurosci Res; 2017 Nov; 95(11):2103-2125. PubMed ID: 28151548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.
    Hertz L; Peng L; Dienel GA
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):219-49. PubMed ID: 16835632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.