These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 24326394)

  • 1. Analysis of spatiotemporal pattern correction using a computational model of the auditory periphery.
    Zeyl TJ; Bruce IC
    Ear Hear; 2014; 35(2):246-55. PubMed ID: 24326394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perception of temporally processed speech by listeners with hearing impairment.
    Calandruccio L; Doherty KA; Carney LH; Kikkeri HN
    Ear Hear; 2007 Aug; 28(4):512-23. PubMed ID: 17609613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchrony capture filterbank: auditory-inspired signal processing for tracking individual frequency components in speech.
    Kumaresan R; Peddinti VK; Cariani P
    J Acoust Soc Am; 2013 Jun; 133(6):4290-310. PubMed ID: 23742379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction of the peripheral spatiotemporal response pattern: a potential new signal-processing strategy.
    Shi LF; Carney LH; Doherty KA
    J Speech Lang Hear Res; 2006 Aug; 49(4):848-55. PubMed ID: 16908879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representation of the vowel /epsilon/ in normal and impaired auditory nerve fibers: model predictions of responses in cats.
    Zilany MS; Bruce IC
    J Acoust Soc Am; 2007 Jul; 122(1):402-17. PubMed ID: 17614499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying envelope and fine-structure coding in auditory nerve responses to chimaeric speech.
    Heinz MG; Swaminathan J
    J Assoc Res Otolaryngol; 2009 Sep; 10(3):407-23. PubMed ID: 19365691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hearing aid gain prescriptions balance restoration of auditory nerve mean-rate and spike-timing representations of speech.
    Dinath F; Bruce IC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1793-6. PubMed ID: 19163029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speech enhancement for listeners with hearing loss based on a model for vowel coding in the auditory midbrain.
    Rao A; Carney LH
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2081-91. PubMed ID: 24686228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of perceptual segregation based on clustering the time series of the simulated auditory nerve firing probability.
    Balaguer-Ballester E; Coath M; Denham SL
    Biol Cybern; 2007 Dec; 97(5-6):479-91. PubMed ID: 17994247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Set of Time-and-Frequency-Localized Short-Duration Speech-Like Stimuli for Assessing Hearing-Aid Performance via Cortical Auditory-Evoked Potentials.
    Stone MA; Visram A; Harte JM; Munro KJ
    Trends Hear; 2019; 23():2331216519885568. PubMed ID: 31858885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological assessment of contrast-enhancing frequency shaping and multiband compression in hearing aids.
    Bruce IC
    Physiol Meas; 2004 Aug; 25(4):945-56. PubMed ID: 15382833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses to cochlear normalized speech stimuli in the auditory nerve of cat.
    Recio A; Rhode WS; Kiefte M; Kluender KR
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2213-8. PubMed ID: 12051441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferred delay and phase-frequency response of open-canal hearing aids with music at low insertion gain.
    Zakis JA; Fulton B; Steele BR
    Int J Audiol; 2012 Dec; 51(12):906-13. PubMed ID: 23025794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of the auditory nerve to sinusoidal electrical stimulation: effects of high-rate pulse trains.
    Runge-Samuelson CL; Abbas PJ; Rubinstein JT; Miller CA; Robinson BK
    Hear Res; 2004 Aug; 194(1-2):1-13. PubMed ID: 15276671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Envelope following responses elicited by English sentences.
    Choi JM; Purcell DW; Coyne JA; Aiken SJ
    Ear Hear; 2013 Sep; 34(5):637-50. PubMed ID: 23575462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A composite model of the auditory periphery for simulating responses to complex sounds.
    Robert A; Eriksson JL
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):1852-64. PubMed ID: 10530011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The temporal representation of speech in a nonlinear model of the guinea pig cochlea.
    Holmes SD; Sumner CJ; O'Mard LP; Meddis R
    J Acoust Soc Am; 2004 Dec; 116(6):3534-45. PubMed ID: 15658705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the quality of enhanced wideband speech with a cochlear model.
    Wirtzfeld MR; Pourmand N; Parsa V; Bruce IC
    J Acoust Soc Am; 2017 Sep; 142(3):EL319. PubMed ID: 28964067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses.
    Bruce IC; Sachs MB; Young ED
    J Acoust Soc Am; 2003 Jan; 113(1):369-88. PubMed ID: 12558276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral auditory processing in normal and abnormal ears: physiological considerations for attempts to compensate for auditory deficits by acoustic and electrical prostheses.
    Evans EF
    Scand Audiol Suppl; 1978; (6):9-47. PubMed ID: 292156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.